44 Chapter 1. Equations of Motign

to express the equations of motion, so far as is possible, in so-called ‘non-dimensiona]’
variables, by which we mean expressing every variable (such as velocity) as the ratio of
its value to some reference value. For velocity the reference could, for example, be the
speed of of light — but this would not be very helpful for fluid dynamical problems in the
Earth's atmosphere or oceans! Rather, we should choose the reference value as a natura]
one for a given flow, in order that, so far as possible, the non-dimensional variables are
order-unity quantities, and doing this is called scaling the equations. Evidently, there is no
reference velocity that is universally appropriate, and much of the art of fluid dynamics lies
in choosing sensible scaling factors for the problem at hand. Non-dimensionalization plays
an important role in fluid dynamics, and we introduce it here with a simple example.

1.11.1 The Reynolds number

Consider the constant-density momenturn equation in Cartesian coordinates. If a typical
velocity is U, a typical length is L, a typical time scale is T, and a typical value of the pressure
deviation is @, then the approximate sizes of the various terms in the momentum equation
are given by
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The ratio of the inertial terms to the viscous terms is (U2/L)/(vU/L?) = UL/v, and this is
the Reynolds number.!? More formally, we can non-dimensionalize the momentum equation
by writing

X ~ L
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where the terms with hats on are non-dimensional values of the variables and the capitalized
quantities are known as scaling values, and these are the approximate magnitudes of the
variables. We choose the non-dimensionalization so that the non-dimensional variables are
of order unity. Thus, for example, we choose U so that u = @(U), where this should be
taken to mean that the magnitude of the variable w is approximately U, or that w ~ U, and
we say that ‘u scales like U, [This @ ()} notation differs from the conventional mathematical
meaning of ‘order’, in which @ = O(e®} represents a limit in which a/¢® - constant as
€ ~ 0.] Thus, if there are well-defined length and velocity scales in the problem, the non-
dimensional variables are of order unity; that is, #i = @(1), and similarly for the other
variables.

Because there are no external forces in this problem, appropriate scaling values for time

and pressure are

T = 5 &= U2, " (1.196)

Substituting (1.195) and (1.196) into the momentum equation we obtain
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where we use the convention that when V operates on a non-dimensional variable it is a
non-dimensional operator. Equation (1.197) simplifies to
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where
Re = % (1.199)

is, again, the Reynolds number. If we have chosen our length and velocity scales sensibly —
th'at is, if we have scaled them properly — each variable in (1.198) is order unity, with the
viscous term being multiplied by the parameter 1/Re. There are two important conclusions:

(i) The ratio of the importance of the inertial terms to the viscous terms is given by
the Reynolds number, defined by (1.199). In the absence of other forces, such as
those due to gravity and rotation, the Reynolds number is the only non-dimensional
parameter explicitly appearing in the momentum equation. Hence its value, along with
the boundary conditions, controls the behaviour of the system.

(i) More generally, by scaling the equations of motion appropriately the parameters deter
mining the behaviour of the system become explicit. Scaling the equations is intelligent
non-dimensionalization.

Notes

1 Joseph-Louis Lagrange (1736-1813) was a Franco-ltalian, born and raised in Turin who then
lived and worked mainly in Germany and France. He made notable contributions in analysis,
nurmber theory and mechanics and was recognized as one of the greatest mathematicians
of the eighteenth century. He laid the foundations of the calculus of variations (to wit,
the ‘Lagrange multiplier') and first formulated the principle of least action, and his treatise
Mécanique Analytique (1788) provides a unified analytic framework (it contains no diagrams,
a feature emutated in Whittaker's Treatise on Analytical Dynamics, 1927) for all Newtonian
mechanics.

Leonard Euler (1707-1783), a Swiss mathematician who lived and worked for extended
periods in Berlin and St. Petersburg, made important contributions in many areas of mathe-
matics and mechanics, including the analytical treatment of algebra, the theory of equations,
calculus, number theory and classical mechanics. He was the first to establish the form of
the equations of motion of fluid mechanics, writing down both the field description of fluids
and what we now call the material or advective derivative,

Truesdell {1954) points out that 'Eulerian’ and ‘Lagrangian’, especially the latter, are inappro-
priate eponyms. The so-called Eulerian description was introduced by d’Alembert in 1749
and generalized by Euler in 1752, and the so-called Lagrangian description was introduced
by Euler in 1759, The modern confusion evidently stems from a monograph by Dirichlet in
1860 that credits Euler in 1757 and Lagrange in 1788 for the respective methods. Clifford
Truesdell (1919-2000) was a remarkable figure himself, known both for his own contributions
to many areas of continuum mechanics and for his scholarly investigations on the history of
mathematics and science; he also had a trenchant and at times pungent writing style. See
Ball & James (2002) for more details.




