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1 Introduction
This course is concerned with the dynamics of the earth’s atmosphere. Atmospheric dynamics is a branch of geo-

physical fluid dynamics, which also includes the dynamics of the oceans, commonly referred to as physical oceanogra-
phy. Although we shall concentrate on atmospheric dynamics, much of our analysis will apply with little modification
to physical oceanography.

The state of the “dry” atmosphere is often considered to be described by seven fields—the three components of
velocity u, v, w, the density ρ, the specific entropy s, temperature T and the pressure p, all of which are functions of
position and time. We can write a complete system of seven equations (five prognostic equations and two diagnostic
equations) for these seven variables. These equations come from the three components of the vector form of Newton’s
law of motion, the mass conservation principle, the entropy conservation principle, the diagnostic equation relating
entropy, temperature and density, and, finally, the ideal gas law. This set of seven equations constitutes “dry dynamics.”
To make the theory come alive with the real weather, we must add other variables and equations. For example, we
could add equations for the water vapor content, the liquid and ice contents (or even their size spectra since different
sizes have different fall speeds) and the ozone content. While these additional variables are necessary to answer
questions such as the role of clouds in global climate change and the role of human activity in the depletion of ozone,
models with all these variables can become quite overwhelming in their complexity. In most of this course we shall
concentrate on dry dynamics. Even this idealization will keep us quite busy. At the end of the course we shall
discuss moist, nonhydrostatic models. To begin, let’s review the ideal gas law, the concept of material derivative, mass
conservation for a compressible fluid, thermodynamics, and noninertial reference frames. At the end of this chapter
we review the complete system of equations for a dry atmosphere.

1.1 Ideal gas law
The gaseous composition of the earth’s atmosphere is given in Table 1.1. Approximately 78.08% of the molecules

in our atmosphere are nitrogen, and approximately 20.95% are oxygen. The inert gases Argon, Neon, Helium, and
Krypton also occur in small percentages. Ozone, an extremely important constituent of the stratosphere, and carbon
dioxide also occur in small percentages that are variable on seasonal and longer time scales. Water vapor is a highly
variable constituent. Near the surface over the warm tropical oceans, nearly 4% of the atmosphere’s molecules may be
water vapor. In contrast, in the cold air at the tropopause a typical value is 0.0004%. The fact that atmospheric water
substance changes phase between vapor, liquid, and ice is an important part of many phenomena, e.g., the ITCZ, the
Hadley circulation, and hurricanes. Because the theory and modeling of the moist atmosphere is difficult, we postpone
this topic to later chapters.

Constituent Molecular Weight Content (fraction of total molecules)

Nitrogen (N2) 28.016 0.7808 (75.51% by mass)
Oxygen (O2) 32.00 0.2095 (23.14% by mass)
Argon (A) 39.94 0.0093 (1.28% by mass)

Water Vapor (H2O) 18.02 0–0.04
Carbon Dioxide (CO2) 44.01 325 parts per million

Neon (Ne) 20.18 18 parts per million
Helium (He) 4.00 5 parts per million
Krypton (Kr) 83.70 1 parts per million
Hydrogen (H2) 2.02 0.5 parts per million
Ozone (O3) 48.00 0–12 parts per million

Table 1.1: The gaseous composition of the Earth’s atmosphere.

For now we ignore water vapor and consider only the other gases listed in Table 1.1. To a good approximation
each of these gaseous constituents can be assumed to satisfy its own ideal gas law. However, for dry models of the
atmosphere it is convenient to have one gas law for all the dry constituents (i.e., all constituents excluding water vapor).
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Thus, consider a mixture of N gases, the nth of which satisfies the ideal gas law

pn = ρn
R∗

mn
T, (1.1)

where R∗ = 8314.3 J K−1 kmole−1 is the universal gas constant, pn is the partial pressure, ρn the density, and mn

the molecular weight (kg kmole−1) of the nth gas. Summing (1.1) over all N gases, we obtain

p = ρ
R∗

m̄
T, (1.2)

where ρ =
∑N

n=1
ρn is the total density, and where the total pressure p =

∑N
n=1

pn is the sum of the partial pressures
pn (Dalton’s Law), and where the mean molecular weight m̄ is defined by

1

m̄
=

N
∑

n=1

1

mn

ρn

ρ
. (1.3)

Let the subscript 1 denote nitrogen, the subscript 2 denote oxygen, the subscript 3 denote Argon, etc. Then, m1 =
28.016 kg kmole−1, m2 = 32.00 kg kmole−1, m3 = 39.94 kg kmole−1, ρ1/ρ = 0.7551, ρ2/ρ = 0.2314, ρ3/ρ =
0.0128, etc., so that (1.3) yields m̄ = 28.966 kg kmole−1 for the mean molecular weight of dry air. Defining R =
R∗/m̄ = 287.0 J kg−1 K−1 as the gas constant of dry air, (1.2) becomes

p = ρRT, (1.4)

which we shall use as the gas law for dry air.

1.2 Material derivative
Although dry air is composed of widely separated, small, individual molecules, we shall model it as a continuous

distribution of matter, i.e., we shall use the continuum hypothesis. There are two primary descriptions of continuum
fluids—the Lagrangian description and the Eulerian description. In the Lagrangian description of fluid flow the inde-
pendent variables are parcel labels (e.g., the initial position of each fluid parcel), and the dependent variables include
the actual positions of each parcel as a function of time. Thus, the trajectory of each parcel is a natural output in the
Lagrangian description. In the Eulerian description of fluid flow the independent variables are the spatial coordinates
and time, and the dependent variables are the velocity, density, and entropy. In the Eulerian description we are con-
cerned more with the fluid velocity at each spatial point rather than where the parcel crossing that point originated.
Here we shall use the Eulerian description. For further discussion of the Lagrangian description and a derivation of
the mass conservation principle under the Lagrangian description, see Chapter 1 of Salmon’s book.

Consider an infinitesimally small fluid element which has position x = (x, y, z) at time t. As this “material
element” moves, its trajectory is given by the function x(t). Now consider some property of the material element,
temperature T say, which varies as the element moves so that T = T (x(t), y(t), z(t), t). The time derivative of
temperature following the material element is

DT

Dt
=

∂T

∂t
+

dx

dt

∂T

∂x
+

dy

dt

∂T

∂y
+

dz

dt

∂T

∂z
. (1.5)

Note that we have used the symbolD/Dt rather than d/dt for the material derivative. To avoid confusion, we reserve
the symbol d/dt for the time derivative of a quantity which is a function of time only. Since

u = (u, v, w) =

(

dx

dt
,
dy

dt
,
dz

dt

)

, (1.6)

(1.5) can also be written
DT

Dt
=

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

∂T

∂t
+ u ·∇T. (1.7)
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1.3 Mass conservation
Let ρ denote the fluid density. Then ρu = (ρu, ρv, ρw) denotes the vector mass flux. The divergence of the vector

mass flux is ∇ · (ρu) = ∂(ρu)/∂x + ∂(ρv)/∂y + ∂(ρw)/∂z. If mass is conserved, but at a local point there is
divergence of the vector mass flux, then the density must decrease at that point, i.e.,

∂ρ

∂t
+ ∇ · (ρu) = 0. (1.8)

Since ∇ · (ρu) = u ·∇ρ + ρ∇ · u and since Dρ/Dt = ∂ρ/∂t + u ·∇ρ by (1.7), we can write (1.8) as

Dρ

Dt
+ ρ∇ · u = 0. (1.9)

Equations (1.8) and (1.9) are equivalent statements of the mass conservation principle, with (1.8) usually being referred
to as the flux form and (1.9) as the advective form.

1.4 Thermodynamic equation
Recall that we are considering air to be an ideal gas, so that it obeys the ideal gas law p = ρRT or pα = RT ,

where α = ρ−1 is the specific volume and R is the gas constant for dry air. Then the first law of thermodynamics can
be written

cv
DT

Dt
+ p

Dα

Dt
= Q, (1.10)

where cv is the specific heat of dry air at constant volume and Q is the diabatic heat source, which, in the earth’s
atmosphere, is primarily due to radiative effects and the change of phase of water. Using the ideal gas law, (1.10) can
be written in the form

cp
DT

Dt
− α

Dp

Dt
= Q, (1.11)

where cp = cv + R is the specific heat of dry air at constant pressure.
The experimental values of the specific heats for dry air are cp = 1004 J kg−1 K−1 and cv = 717 J kg−1 K−1. Note

that cp ≈
7

2
R and cv ≈

5

2
R. Why should this be so? Dry air is predominantly made up of N2 and O2, two diatomic

gases. Each diatomic molecule can be considered as two rigidly connected point masses. Each such molecule has
five degrees of freedom, i.e., it can move in three independent directions and can rotate about two independent axes
(rotations about the line connecting the two atoms of the diatomic molecule do not count since the atoms are point
masses). The specific internal energy of the dry air is cvT . According to the equipartition theorem, each degree of
freedom has a specific energy of 1

2
RT , so that cvT = 5

2
RT , i.e., cv = 5

2
R, and since cp = cv + R, cp = 7

2
R. It is

true that a diatomic molecule is not rigid but can vibrate as the atoms move back and forth along the line connecting
them. However, these additional degrees of freedom are not important at atmospheric temperatures. They do become
important at much higher temperatures. Note that, for a monatomic gas, rotations are not relevant and the relations are
cv = 3

2
R and cp = 5

2
R. It should also be noted that a complete theory of specific heats involves statistical mechanics

and quantum theory.
A more compact form of the thermodynamic equation can be found as follows. Dividing by T and using the ideal

gas law, we can write (1.11) as

cp
D

Dt

{

ln

[

T

(

p0

p

)κ]}

=
Q

T
, (1.12)

where κ = R/cp ≈ 2/7 and p0 is a constant reference pressure. Defining the potential temperature θ as

θ = T

(

p0

p

)κ

, (1.13)

we can write (1.12) as
cp

D ln θ

Dt
=

Q

T
. (1.14)

When Q = 0, the flow is termed adiabatic, and (1.14) reduces to Dθ/Dt = 0. Thus, the potential temperature is
materially conserved for adiabatic flow. The physical interpretation of θ is the temperature a material element would
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have if it were adiabatically expanded (for p > p0) or compressed (for p < p0) to the reference pressure p0. Usually
p0 is chosen to be 100 kPa, so that θ > T for most material elements.

Another way to express the thermodynamic equation is in terms of the specific entropy, which is defined by

s = cp ln

(

θ

T0

)

= cv ln

(

T

T0

)

− R ln

(

ρ

ρ0

)

= cp ln

(

T

T0

)

− R ln

(

p

p0

)

,

(1.15)

where T0 is a constant reference temperature and ρ0 a constant reference density, with ρ0, T0, p0 related by p0 =
ρ0RT0. Written in terms of specific entropy, (1.14) becomes

Ds

Dt
=

Q

T
. (1.16)

For adiabatic flow, (1.16) reduces to Ds/Dt = 0. Since the potential temperature θ and the entropy s are related by

θ = T0e
s/cp , (1.17)

θ is sometimes referred to as “meteorologist’s entropy.”
The term “adiabatic,” meaning “a”–“diabatic” or “without heating,” is usually used to refer to a flow process. For

example, air can descend adiabatically on the lee slopes of the Rockies. According to (1.13), p and T of a descending
parcel are increasing in such a way that θ is invariant for the parcel. As a second example, the sound waves we use
to talk to each other represent an adiabatic flow. They are waves of compression and rarefaction with accompanying
variations of p and T that leave θ unchanged, i.e., sound waves are “visible” in the pressure and temperature fields but
are “invisible” in the potential temperature (or entropy) field.

The term “homentropic,” meaning “homogeneous”–“entropy,” is usually used to refer to the state of the atmosphere
at a particular time. Thus, a homentropic atmosphere is one in which s (or θ) is the same everywhere. This is an overly
idealized view of the actual atmosphere. As shown in problem 1, s and θ generally increase with height, so that the
atmosphere is statically stable. The consequences of rotation and static stability lie at the heart of geophysical fluid
dynamics.

1.5 Noninertial reference frames
Consider the following experiment, which you can perform with two friends. Get a baseball and go to the merry-

go-round at the city park playground. Have your two friends get on exactly opposite sides of the merry-go-round and
get it rotating counterclockwise at constant angular velocity, while you get up in a nearby tree to observe from above.
Now have the one of your two friends who is holding the baseball and rotating around, throw it at your other friend
on the opposite side while you watch from above. When you get together to talk about what happened, you will have
differing views. Having viewed the event from above, you will say the baseball simply traveled in a straight line, but
that the catcher rotated away while the ball was in the air. Both people on the merry-go-round will say the ball did not
travel in a straight line but curved to the right of its original direction of motion. If they possess wild imaginations,
they may even claim some mysterious force deflected it to the right.

The reason for the differing interpretations lies in the fact that you observed the event in an inertial reference
frame1 while your friends observed it in a noninertial frame. For example, think of your coordinate system as having
its origin at the center of the merry-go-round but having its axes fixed to the earth. Think of your friends’ coordinate
system as also having its origin at the center of the merry-go-round but having its axes fixed to the merry-go-round.
Obviously, the noninertial frame is rotating at constant angular velocity with respect to the inertial frame.

In a sense we live on a spherical merry-go-round. Imagine two coordinate systems whose origins are at the center
of the earth. Let the third axis of each coincide with the earth’s axis of rotation, so the other axes lie in the equatorial
plane. Let one coordinate system be inertial in the sense that its axes do not rotate with the earth but rather always point
to the same stars. Let the other coordinate system be noninertial in the sense that its axes are frozen to the rotating earth.
The point is that Newton’s laws of motion strictly apply only in the inertial frame. But we observe the atmosphere and

1Actually, since you were sitting in a tree with roots going into the rotating earth, you also observed the event in a noninertial frame. However,
since the merry-go-round was rotating thousands of times faster than the earth, we can neglect the effects of the earth’s rotation.
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ocean by measuring velocities with respect to the rotating earth, i.e., in the noninertial frame. If the law of motion is
going to predict the velocity with respect to the rotating earth, this law must include apparent (or fictitious) forces, one
of which is the Coriolis force. Now let’s see if we can make these intuitive arguments mathematically precise.

Let the subscript “a” refer to measurements relative to the absolute or fixed (relative to the stars) frame. This is
the inertial frame. For an inertial frame whose origin is at the center of the earth, the unit vectors always point to
the same distant stars, i.e., the inertial frame does not rotate with the earth. Velocities and accelerations are measured
with respect to the “fixed stars.” Newton’s second law of motion states that the rate of change of momentum of a
material element is equal to the net force acting on the element. We shall consider the net force to be the sum of three
forces—the pressure gradient force, the gravitational force and the frictional force. Newton’s second law of motion
then becomes

Daua

Dt
= −α∇p −∇Φ + F, (1.18)

where −α∇p is the pressure gradient force per unit mass, −∇Φ is the gravitational force per unit mass, and F is the
frictional force per unit mass.

In geophysical fluid dynamics we measure motions with respect to the rotating earth, i.e., in terms of u and not
ua. Let Ω denote the rotation vector of the earth, i.e., a vector along the axis of the earth’s rotation with magnitude
equal to the angular velocity (with respect to the stars, not the sun), which is 7.292116 × 10−5 rad s−1. The absolute
velocity ua is then related to the relative velocity u, the rotation vector Ω and the position vector r by

ua = u + Ω × r, (1.19a)

or, equivalently,
Dar

Dt
=

Dr

Dt
+ Ω × r. (1.19b)

In fact, for any vectorA we have
DaA

Dt
=

DA

Dt
+ Ω × A. (1.20)

If we apply (1.20) to (1.19a) we obtain

Daua

Dt
=

Du

Dt
+ 2Ω × u + Ω × (Ω × r) . (1.21)

Using this in (1.18) we obtain
Du

Dt
= −α∇p − 2Ω × u + g + F, (1.22)

where
g = −∇Φ − Ω × (Ω × r) (1.23)

is the acceleration of gravity. The forces 2Ω × u (Coriolis) and Ω × (Ω × r) (centrifugal) are not true forces, but
rather apparent forces which arise from our use of a noninert ial reference frame.

1.6 The Foucault pendulum
The Foucault pendulum was devised in 1851 by the French physicist Jean Leon Foucault (1819–1868). It is

basically a very large pendulum, often suspended in a section of a multi-story building (e.g., the Denver Natural
History Museum or the Smithsonian in Washington DC) which is open from the basement floor to the roof. The
pendulum bob is usually quite massive and is connected to a ceiling ball joint by a thin wire, which we will consider
massless. In larger buildings the pendulum length may be on the order of 20 m. The period of an ordinary, simple
pendulum is the time it takes for one complete swing and is given by 2π

√

ℓ/g, where ℓ is the pendulum length and g
is the acceleration of gravity. For ℓ = 20 m and g = 9.8 ms−2, this period is about 9 seconds.

The most interesting feature of the Foucault pendulum is that it reveals the effect of the Coriolis force. To see this,
imagine you are watching such a slowly oscillating pendulum bob swing back and forth, alternately away and then
toward you. As the pendulum swings away from you, it should be deflected slightly to your right by the Coriolis force
(assuming you are in the northern hemisphere), while as it swings toward you it should be deflected slightly to your
left. In other words, it is always being deflected to the right of its motion. Thus, the plane formed by the oscillating
pendulum support wire should rotate clockwise when viewed from above. We shall prove that this plane makes a
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complete clockwise rotation in the time 2π/(Ω sin φ), which is called a pendulum day. Here Ω is the rotation rate of
the earth in rad s−1 and φ is the latitude (note that 2π/Ω = 23.934 hours is the length of a sidereal day). At 40N a
pendulum day is 37.24 hours. Often a downward pointing spike is attached to the bottom of the pendulum bob and a
circle of small pegs is set up on the floor near the outer limits of the pendulum swings. As the plane of oscillation turns
clockwise the pegs are knocked down by the spike. Since the spike can knock down pegs on both ends of its swing,
all the pegs are knocked down in half a pendulum day, which is 18.62 hours at 40N. Museum employees sometimes
mark the times at which certain pegs were knocked down, since the human attention span is usually not long enough
to observe a significant fraction of a pendulum day.

To describe the motion of the pendulum bob let us select a coordinate system with x pointing eastward, y pointing
northward and z upward along the local vertical. We shall limit our analysis to oscillations of small amplitude, so that
the horizontal excursions of the pendulum are small compared to the length of the pendulum. Under this condition
the pendulum bob stays nearly in the horizontal plane, so that the vertical velocity component ż can be neglected
compared to the horizontal components ẋ and ẏ. The pendulum bob has three forces acting on it—gravity, the tension
of the support wire and Coriolis. Newton’s law applied to the pendulum bob is

ẍ = g +
T

m
− 2Ω × ẋ, (1.24)

where x is the vector position of the pendulum bob, m the mass of the pendulum bob, T/m is the acceleration
produced by the suspension wire tension force T ≈ (−Tx/ℓ,−Ty/ℓ, T ), ẋ ≈ (ẋ, ẏ, 0) the velocity components, and
g = (0, 0,−g) the acceleration of gravity. Since

2Ω × ẋ =

∣

∣

∣

∣

∣

∣

i j k
0 2Ω cos φ 2Ω sin φ
ẋ ẏ 0

∣

∣

∣

∣

∣

∣

= −ẏ2Ω sin φ i + ẋ2Ω sin φ j − ẋ2Ω cos φk, (1.25)

we can write (1.24) in component form as
ẍ − fẏ +

T

m

x

ℓ
= 0, (1.26)

ÿ + fẋ +
T

m

y

ℓ
= 0, (1.27)

T

m
= g, (1.28)

where f = 2Ω sin φ is the Coriolis parameter and φ the latitude. Here we have neglected the Coriolis term in the
vertical equation of motion since it is much smaller than g or T/m. Using (1.28) in (1.26) and (1.27), and defining
ν2 = g/ℓ, we obtain

ẍ − fẏ + ν2x = 0, (1.29)

ÿ + fẋ + ν2y = 0. (1.30)

These two equations are coupled through the Coriolis terms. Instead of solving two equations for the two real variables
x(t), y(t), we can solve a single equation for the complex variable q(t) = x(t) + iy(t). Adding (1.29) and i times
(1.30), we obtain

q̈ + if q̇ + ν2q = 0. (1.31)

The solution of (1.31) is
q(t) = e−i 1

2
ft

(

Aeiνt + Be−iνt
)

, (1.32)

where A and B are complex constants which depend on the initial conditions. In deriving (1.32) we have assumed
f2 << ν2. For simplicity let us assume that q = 0 at t = 0, so that A + B = 0. Let us also assume ẋ = 0 at t = 0.
Using these conditions in (1.32) and separating the result into real and imaginary parts we obtain

x(t) =
ẏ0

ν
sin(1

2
ft) sin(νt), (1.33)

y(t) =
ẏ0

ν
cos( 1

2
ft) sin(νt), (1.34)
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where ẏ0 is the initial y-component of velocity. Thus, (1.33)–(1.34) are the solutions of (1.29)–(1.30). These solutions,
which give the position of the pendulum bob at any instant, show that we start off with the pendulum oscillating in the
y-direction, but when ft = π it is oscillating in the x-direction. One complete rotation of the plane of oscillation has
occurred when ft = 4π, i.e., one pendulum day is 2π/(Ω sin φ).

While the Coriolis force may seem quite small (since it takes ten or fifteen thousand swings of the pendulum before
the plane of oscillation rotates completely around), it is crucial for large scale motions of the atmosphere and ocean. An
important difference between the atmosphere and the Foucault pendulum bob is that atmospheric parcels do not reverse
their direction every 5 seconds. In large scale atmospheric motions there tends to be mutual adjustment between the
wind field and the pressure field so that there is an approximate balance between the horizontal components of α∇p
and 2Ω × v. This is called geostrophic balance and will be an important theme in later chapters.

1.7 The complete system of equations for a dry atmosphere
To summarize, let us now collect the vector momentum equation (1.22), the mass conservation equation (1.9), the

thermodynamic equation (1.16), the definition of specific entropy (1.15), and the gas law (1.4) to obtain

Du

Dt
= −

1

ρ
∇p − 2Ω × u −∇Φ − Ω × (Ω × r) + F, (1.35)

Dρ

Dt
+ ρ∇ · u = 0, (1.36)

Ds

Dt
=

Q

T
, (1.37)

s = cv ln

(

T

T0

)

− R ln

(

ρ

ρ0

)

, (1.38)

p = ρRT. (1.39)

We can regard (1.35)–(1.39) as a closed system of seven scalar equations for the five scalar predictive variables u, ρ, s
and the two diagnostic variables T and p. Knowing ρ and s from the predictions using (1.36) and (1.37), the diagnostic
determination of T from (1.38) is facilitated by rewriting (1.38) in the form

T = T0

(

ρ

ρ0

)R/cv

es/cv . (1.40)

Later, when we discuss the dynamics of a moist atmosphere, we shall generalize the system (1.35)–(1.39) by adding
two more predictive equations for two new predictive variables—the density of airborne water substance (vapor and
cloud particles) and the density of precipitating water substance. In addition, the formula for entropy will become
more complicated and we will have two ideal gas laws, one for the partial pressure of dry air and one for the partial
pressure of water vapor. The pressure gradient force in the momentum equation will then involve the total pressure,
i.e., the sum of the partial pressures of dry air and water vapor. In the moist case, the formula for entropy does not
allow a rearrangement analogous to (1.40), so that temperature must be iteratively determined from a transcendental
equation for T .

Required Reading

• Holton, chapter 1.

• Salmon, chapter 1.

• Gill, chapters 1–3.

1-7



CSU ATS601/602 Fall 2008

Problems

1. The table below gives the pressure and temperature for the mean sounding from the Marshall Islands area of the
equatorial Pacific. Plot this mean sounding on a tephigram or a skew-T, log p diagram. Fill in two additional
columns, one for potential temperature and one for entropy (use T0 = 300 K for the reference temperature).

• Where is the tropopause for this mean sounding?
• How much does the potential temperature increase across the troposphere?
• What happens to the entropy curve if you change the reference temperature T0 to 273.15 K?

Pressure Temperature
(mb) (C)

50 −60.63
100 −73.42
150 −68.51
200 −55.42
250 −43.37
300 −33.22
350 −24.82
400 −17.66
450 −11.73
500 −6.71
550 −2.25
600 1.68
650 5.40
700 8.78
750 11.75
800 14.41
850 16.90
900 19.69
950 22.75
1000 26.08
1010 26.78
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2 Fundamentals
Near the middle of the 19th century, long before the birth of geophysical fluid dynamics, Helmholtz in Germany

and Kelvin in Great Britain independently realized the importance of the rotational aspects of fluid flow. Helmholtz’
arguments involved the vorticity equation while Kelvin’s arguments involved the circulation equation (or circulation
theorem). These are two complementary ways of studying the rotational aspects of the flow. They are both derived
from the vector momentum equation—the vorticity equation being obtained by taking the curl of the momentum equa-
tion, and the circulation theorem being obtained by taking a line integral of the momentum equation. In geophysical
fluid dynamics attention is often centered on the rotational aspects of the flow. Then, the concepts of relative vorticity,
absolute vorticity, potential vorticity, and circulation come to center stage. In this chapter we review each of these
fundamental concepts.

2.1 Vorticity and circulation
Letting u denote the vector velocity relative to the rotating earth, the relative vorticity ζζζ is defined by

ζζζ = ∇× u. (2.1)

Letting Ω denote the angular velocity vector of the earth’s rotation, and r denote the position vector, the absolute
vorticity ζζζa is defined by

ζζζa = ∇× ua = ∇× (u + Ω × r) = 2Ω + ∇× u. (2.2)

The definitions (2.1) and (2.2) involve the curl operator and are coordinate independent. Geophysical fluid dy-
namics problems can be formulated in a variety of coordinate systems, the most common being cartesian, cylindrical
(polar), and spherical. The expression of the curl operator in each of these coordinates is discussed in Appendix B.
Using cartesian coordinates with x, y, z denoting the eastward, northward, and vertical directions, u, v, w the corre-
sponding velocity components, and i, j,k the corresponding unit vectors, the relative vorticity is expressed as

∇× u =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

u v w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂w

∂y
−

∂v

∂z

)

i +

(

∂u

∂z
−

∂w

∂x

)

j +

(

∂v

∂x
−

∂u

∂y

)

k. (2.3)

In the study of atmospheric vortices such as hurricanes and tornadoes it is often convenient to use cylindrical
coordinates (r,φ, z), where r is the radius, φ is the tangential angle, and z is the vertical distance. The vector velocity
is u = ui + vj + wk, where u, v, w are now the radial, tangential, and vertical components of velocity, and i, j,k are
the respective unit vectors. In cylindrical coordinates the curl of the vector velocity is

∇× u =
1

r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i rj k

∂

∂r

∂

∂φ

∂

∂z

u rv w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂w

r∂φ
−

∂v

∂z

)

i +

(

∂u

∂z
−

∂w

∂r

)

j +

(

∂(rv)

r∂r
−

∂u

r∂φ

)

k. (2.4)

One useful idealized two-dimensional vortex is called the Rankine vortex, in which u = 0, w = 0, and the
tangential wind v is assumed to depend on r only, with the explicit form for v given by

v(r) = v0

{

r/r0 if 0 ≤ r ≤ r0

r0/r if r0 ≤ r < ∞,
(2.5)

where v0 and r0 are specified parameters which determine the maximum wind and the radius of maximum wind
respectively. The vorticity of this Rankine flow is

∇× u =
∂(rv)

r∂r
k = k

2v0

r0

{

1 if 0 ≤ r < r0

0 if r0 < r < ∞.
(2.6)
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Note that the vertical component of vorticity can also be written as ∂v/∂r + v/r. For a Rankine vortex ∂v/∂r and
v/r are the same magnitude and same sign inside r0, but are the same magnitude and opposite sign outside r0. Thus,
a Rankine vortex has constant vorticity inside r0 and zero vorticity outside r0.

Now consider the Rankine vortex in the limit as r0 → 0 and v0 → ∞ in such a way that the product r0v0 remains
fixed. This is a point vortex, i.e., all the vorticity is concentrated at a point, and the flow is irrotational (zero vorticity)
everywhere except at that point. One could imagine a swarm of hundreds or thousands of point vortices, mutually
advecting each other around in a chaotic fashion. Such models have proved useful in the study of two-dimensional
turbulence. One fascinating result involves an initial swarm of point vortices, half of which have clockwise spin and
half of which have anticlockwise spin, with the two types chaotically mixed up in the initial state. As the flow evolves
under mutual advection, the two types segregate, with the result that a large cyclonic flow covers half the domain and
a large anticyclonic flow the other half of the domain. Order has emerged out of chaos.

In numerical weather prediction (NWP) models and global climate models (GCM’s) it is often convenient to use
spherical coordinates (λ,φ, r), where λ is the longitude, φ is the latitude, and r is the distance from the center of the
earth. The vector velocity is u = ui + vj + wk, where u, v, w are the zonal, meridional, and vertical components of
velocity, and i, j,k are the respective unit vectors. In spherical coordinates the curl of the vector velocity is

∇× u =
1

r2 cos φ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ir cos φ jr k

∂

∂λ

∂

∂φ

∂

∂r

ur cos φ vr w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂w

r∂φ
−

∂(rv)

r∂r

)

i +

(

∂(ru)

r∂r
−

∂w

r cos φ∂λ

)

j +

(

∂v

r cos φ∂λ
−

∂(u cos φ)

r cos φ∂φ

)

k. (2.7)

In addition, defining the velocity due to the earth’s rotation as ue = Ω × r = iΩr cos φ, we have

∇× ue =
1

r2 cos φ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ir cos φ jr k

∂

∂λ

∂

∂φ

∂

∂r

Ωr2 cos2 φ 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= j2Ω cos φ + k2Ω sin φ = 2Ω, (2.8)

confirming the last equality in (2.2).
Now that we have defined the vorticity vector, let us consider the concepts of vortex lines and vortex tubes. A

vortex line (also called a vortex filament) is a line in the fluid which is everywhere parallel to the vorticity vector. Now
consider all the vortex lines which pass through a closed curve, as shown in Fig. 2.1. The ends of this tube have unit
normal vectors denoted by n1 and n2, both in the direction of the vorticity vector. Applying Gauss’ theorem (see
Appendix A), we obtain

∫∫∫

∇ · ζζζ dV =

∫∫

ζζζ · n dA, (2.9)

where n is the unit outward normal to the surface of the vortex tube. Since ∇ · ζζζ = 0, the left hand side of (2.9)
vanishes. Since the vorticity vector is tangent to the sides of the tube, the only contributions to the right hand side of
(2.9) come from the ends of the tube. Thus,

∫∫

ζζζ · n dA1 =

∫∫

ζζζ · n dA2, (2.10)

which shows that the strength of the vortex tube is the same at every cross section.
Now that we understand the concepts of vorticity, vortex lines, and vortex tubes, let us consider the concept of

circulation. The relative circulation is defined by

C =

∮

u · dr, (2.11)

and the absolute circulation by
Ca =

∮

ua · dr, (2.12)
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ζ    

ζ    

Figure 2.1: A vortex tube, whose sides are composed of vortex lines. Vortex lines are everywhere tangent to the
vorticity vector. From Salmon 1998.

where the integral is around an arbitrary closed curve and dr is the vector element of length along the closed curve.
Obviously, while the vector relative vorticity ζζζ = ∇× u is a pointwise measure of fluid rotation, the circulation C is
a bulk measure of fluid rotation. It is very important to note that the closed curve in (2.11) and (2.12) is arbitrary. In
particular, it may be fixed in space, or it may be defined by moving fluid particles.

What is the relationship between the vorticity ζζζ and the circulation C? A first reaction to this question might be
that there is none since ζζζ is a vector and C is a scalar. However, the line integral in the definition of C is along an
arbitrary circuit. In particular the circuit could be in the x-y plane, so in this case the circulation might be related to
the z component of ζζζ. Similarly, a circuit in the y-z plane could be be related to the x component of ζζζ, and a circuit
in the x-z plane could be be related to the y component of ζζζ. The circuit does not have to lie in one of the three
cartesian coordinate planes. For example, it could lie in a surface of constant ρ, or a surface of constant p, or a surface
of constant θ. This last case will prove very important in the derivation of Kelvin’s circulation theorem (section 2.5).

To better understand the relationship of vorticity and circulation let us consider the case when the line integral
in C lies in the x-y plane. Assume the circuit is a small rectangle with sides of length δx and δy, as shown in
Fig. 2.2. The horizontal velocity at the center of the rectangle is u, v. The velocity components vary in space. For
example, the v component on the right edge is approximately v + 1

2
(∂v/∂x)δx, and the v component on the left edge

is approximately v − 1

2
(∂v/∂x)δx, where 1

2
δx is the distance from the center to the left and right edges. Similarly,

the u component on the top edge is approximately u + 1

2
(∂u/∂y)δy, and the u component on the bottom edge is

approximately u − 1

2
(∂u/∂y)δy. The circulation is computed by taking the line integral of u · dr, i.e.,

C =

∮

u · dr

=

(

u − 1

2

∂u

∂y
δy

)

δx +

(

v + 1

2

∂v

∂x
δx

)

δy −

(

u + 1

2

∂u

∂y
δy

)

δx −

(

v − 1

2

∂v

∂x
δx

)

δy

=

(

∂v

∂x
−

∂u

∂y

)

δxδy. (2.13)

This shows that, for a small loop, the circulation is approximately equal to the vorticity inside the loop times the area
enclosed by the loop.

The exact and general relationship between circulation and vorticity is provided by Stokes’ theorem (see Appendix
A). Using Stokes’s theorem we can rewrite (2.11) and (2.12) as

C =

∮

u · dr =

∫∫

ζζζ · n dA, (2.14)
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Figure 2.2: A small rectangular circuit with sides δx and δy in the x-y plane. From Gill 1982.

and
Ca =

∮

ua · dr =

∫∫

(2Ω + ζζζ) · n dA, (2.15)

where, in the final equalities, the area integral is over a surface with unit outward normal n and area element dA. Note
that (2.13) is a special case of (2.14).

2.2 Vector vorticity equation
We now derive the vector vorticity equation, i.e., the equation for the time evolution of ζζζa. Defining the absolute

vorticity vector ζζζa = 2Ω + ∇× u, we can write the momentum equation (1.35) as

∂u

∂t
+ 1

2
∇(u · u) − u × ζζζa = −∇Φ − Ω × (Ω × r) − α∇p + F. (2.16)

Taking the curl of (2.16), and noting that ∇ × [Ω × (Ω × r)] = 0 and that (A.8) and (A.4) can be used to show that
−∇× (α∇p) = ∇p ×∇α, we obtain

∂ζζζa

∂t
−∇× (u × ζζζa) = ∇p ×∇α + ∇× F. (2.17)

Using (A.11) we have∇× (u× ζζζa) = u(∇ · ζζζa)− ζζζa(∇ ·u) + (ζζζa ·∇)u− (u ·∇)ζζζa, and since∇ · ζζζa = 0, we can
write (2.17) as

Dζζζa

Dt
+ ζζζa∇ · u = (ζζζa ·∇)u + ∇p ×∇α + ∇× F. (2.18)

Using the mass continuity equation to eliminate ∇ · u, (2.18) becomes

ρ
D

Dt

(

ζζζa

ρ

)

= (ζζζa ·∇)u + ∇p ×∇α + ∇× F. (2.19)

The term (ζζζa · ∇)u incorporates the effects of vortex tilting and vortex stretching. To see this we first note that the
operator ζζζa ·∇ is proportional to the derivative along the absolute vorticity vector, and that this operator acts on the
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vector velocity u, which can have components perpendicular to and parallel to ζζζa. If the component of u perpendicular
to ζζζa varies in the dirction of ζζζa, then the vortex is tilted. If the component of u parallel to ζζζa varies in the direction
of ζζζa, then the vortex is stretched or compressed. The remaining two terms on the right hand side of (2.19) are the
solenoidal and frictional terms. In the special case of an inviscid, constant density fluid, the last two terms in (2.19)
vanish.

2.3 Potential vorticity equation
To derive the potential vorticity (PV) principle, we return to the vector vorticity equation in the form (2.17). Scalar

multiplication of (2.17) by ∇θ yields

∇θ ·
∂ζζζ

∂t
−∇θ ·∇× (u × ζζζ) = ∇θ · (∇p ×∇α) + (∇× F) ·∇θ. (2.20)

The potential temperature θ is a function of p and ρ, so that

∇θ =

(

∂θ

∂p

)

ρ

∇p +

(

∂θ

∂ρ

)

p

∇ρ. (2.21)

Since ∇p · (∇p ×∇ρ) = 0 and ∇ρ · (∇p ×∇ρ) = 0, (2.21) implies that ∇θ · (∇p ×∇ρ) = 0, so the first term on
the right hand side of (2.20) vanishes. Now, using (A.10), we obtain∇ · [∇θ × (u× ζζζa)] = −∇θ ·∇× (u× ζζζa), so
that (2.20) becomes

∇θ ·
∂ζζζa

∂t
+ ∇ · [∇θ × (u × ζζζa)] = (∇× F) ·∇θ. (2.22)

The triple vector product formula (A.2) results in ∇θ × (u × ζζζa) = u(ζζζa · ∇θ) − ζζζa(u · ∇θ), which, along with
u ·∇θ = θ̇ − ∂θ/∂t, allows us to write

∇θ × (u × ζζζa) = u(ζζζa ·∇θ) + ζζζa

(

∂θ

∂t
− θ̇

)

. (2.23)

Taking the divergence of (2.23) and using (A.7), we obtain

∇ · [∇θ × (u × ζζζa)] = u ·∇(ζζζa ·∇θ) + (ζζζa ·∇θ)∇ · u + ζζζa ·∇

(

∂θ

∂t
− θ̇

)

, (2.24)

since ∇ · ζζζa = 0. Substitution of (2.24) into (2.22) results in

∂(ζζζa ·∇θ)

∂t
+ ∇ · [u(ζζζa ·∇θ)] = ζζζa ·∇θ̇ + (∇× F) ·∇θ, (2.25)

which can also be written
D

Dt
(ζζζa ·∇θ) + (ζζζa ·∇θ)∇ · u = ζζζ ·∇θ̇ + (∇× F) ·∇θ. (2.26)

Multiplication of (2.26) by α and use of the continuity equation (1.36) results in

DP

Dt
=

1

ρ
ζζζa ·∇θ̇ +

1

ρ
(∇× F) ·∇θ, (2.27)

where
P =

1

ρ
ζζζa ·∇θ =

1

ρ
(2Ω + ∇× u) ·∇θ (2.28)

is the Ertel potential vorticity. In the absence of friction and diabatic heating, the right hand side of (2.27) vanishes and
the Ertel potential vorticity is materially conserved. This is one of the most important results in large-scale dynamic
meteorology.

Defining ĵ = ∇θ/|∇θ| as the unit vector normal to the θ-surface and k̂ = ζζζa/|ζζζa| as the unit vector along the
absolute vorticity vector, we can rewrite (2.27) as

DP

Dt
= P

(

ĵ · (∇× F)

ĵ · ζζζa

+
k̂ ·∇θ̇

k̂ ·∇θ

)

. (2.29)
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2.4 Impermeability theorem
To prove the impermeability theorem we return to (2.25). Since ρP = ζζζa ·∇θ, and since (A.5) and (A.7) imply

ζζζ ·∇θ̇ = ∇ · (ζζζθ̇), while (A.4) and (A.10) imply (∇× F) ·∇θ = ∇ · (F ×∇θ), we can rewrite (2.25) as

∂(ρP )

∂t
+ ∇ · J = 0, (2.30)

where
J = uρP − ζζζaθ̇ − F ×∇θ (2.31)

is the total flux of PV, consisting of the advective flux uρP and the nonadvective flux −ζζζaθ̇ − F ×∇θ.
Now let’s manipulate J in a way that yields the impermeability theorem. Let u∥ and ζζζa∥ denote the components

of u and ζζζa which are parallel to the θ-surface. These components are defined by simply subtracting from u and ζζζa

the components that are perpendicular to the θ-surface, i.e.,

u∥ = u −
u ·∇θ

|∇θ|2
∇θ, (2.32)

ζζζa∥ = ζζζa −
ζζζa ·∇θ

|∇θ|2
∇θ. (2.33)

Using (2.32) and (2.33) we can rewrite (2.31) as

J =

(

u∥ +
u ·∇θ

|∇θ|2
∇θ

)

ρP −

(

ζζζa∥ +
ζζζa ·∇θ

|∇θ|2
∇θ

)

θ̇ − F ×∇θ. (2.34)

Now notice that the second term in the second large parentheses involves ζζζa · ∇θ, which can be written as ρP .
This allows the second term in the first large parentheses and the second term in the second large parentheses to be
combined, so that (2.31) becomes

J = uθ⊥ρP + u∥ρP − ζζζa∥θ̇ − F ×∇θ, (2.35)

where
uθ⊥ = −

∂θ/∂t

|∇θ|2
∇θ. (2.36)

It is important to note that the dot product of ∇θ with (2.36) yields ∂θ/∂t + uθ⊥ ·∇θ = 0, so that if you move with
velocity uθ⊥ (not the velocity of a mass element, which is u), the potential temperature does not change. In other
words, uθ⊥ is the velocity of the isentropic surface normal to itself. Note what has happened: part of the advective
flux has combined with part of the diabatic flux to yield uθ⊥ρP . The impermeability theorem, as stated by McIntyre,
is as follows. Since the last three terms in (2.35) all represent vectors lying parallel to the local isentropic surface,
while the first is just ρP times the normal velocity uθ⊥ of that surface, it follows that a point moving with velocity
J/ρP always remains on exactly the same isentropic surface, whether or not the air is moving across that surface as
occurs when the diabatic heating θ̇ ̸= 0. The velocity J/ρP can be pictured as the velocity with which PVS molecules
or particles would move, discounting notional thermal motions.
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2.5 Circulation theorem
We now derive the circulation equation, i.e., the equation for the time evolution of Ca. Taking the time derivative

of (2.15), and assuming the flow to be inviscid, we obtain

dCa

dt
=

∮

D

Dt
(ua · dr)

=

∮
[(

Du

Dt
+ Ω × u

)

· dr + (u + Ω × r) · du

]

=

∮
(

Du

Dt
+ 2Ω × u

)

· dr

= −

∮
(

1

ρ
∇p + ∇Φ

)

· dr

= −

∮

1

ρ
∇p · dr

= −

∮

dp

ρ
. (2.37)

In going from the second to the third line we have used (u+Ω×r) ·du = d[ 1
2
ua ·ua]−d[ 1

2
(Ω×r)2]−u · (Ω×dr),

which, upon integration, yields
∮

(u + Ω × r) · du =
∮

(Ω × u) · dr. In going from the third to the fourth line we
have used the inviscid form of the momentum equation, and in going from the fourth to the fifth line, we have used
∮

∇Φ · dr =
∮

dΦ = 0. Returning to the fifth line in (2.37), and using Stokes’ theorem (see Appendix A), we obtain

dCa

dt
= −

∮

1

ρ
∇p · dr

= −

∫∫

∇×

(

1

ρ
∇p

)

· n dA

=

∫∫

1

ρ2
(∇ρ ×∇p) · n dA. (2.38)

If the flow is adiabatic, and if the chain of fluid particles constituting the line integral is initially on a θ-surface, the
chain will remain on this same θ-surface. Thus, the surface involved in the area integral in the third line of (2.38) is
a θ-surface, and n must be the unit normal to this θ-surface. This means that (∇ρ ×∇p) · n must be proportional to
(∇ρ×∇p) ·∇θ. But we argued in section 2.3 that (∇ρ×∇p) ·∇θ = 0, so that (∇ρ×∇p) ·n must also vanish, and
therefore

d

dt

∮

ua · dr = 0. (2.39)

This is the circulation theorem. It states that, for inviscid adiabatic flow, the circulation around any chain of particles
on an isentropic surface, is invariant in time. Note the close connection with the PV equation.

2.6 Helicity
The helicity is defined by

H(t) =

∫∫∫

u · ζζζ dV. (2.40)
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In the special case when the fluid is homentropic, the equation for the time change of helicity is

DH

Dt
=

∫∫∫

D

Dt
[u · (ζζζ/ρ)] ρ dV

=

∫∫∫
[

Du

Dt
· (ζζζ/ρ) + u ·

D(ζζζ/ρ)

Dt

]

ρ dV

=

∫∫∫

[−∇P · ζζζ + u · (ζζζ ·∇)u] dV

=

∫∫∫

[

−∇ · (Pζζζ) + 1

2
∇ · (ζζζu · u)

]

dV

= 0. (2.41)

The helicity is a measure of the knottedness of vortex tubes. It is not used much in large-scale geophysical fluid
dynamics, but is useful in studies of rotating thunderstorms and tornadoes. A tornado has large upward components of
both u and ζζζ, and hence can have large helicity. We can define helical turbulence as turbulent flow with a significant
non-zero helicity. Kraichnan (1973) found that the inertial cascade of energy to smaller scales is slowed down in
helical turbulence. Thus, helicity can stabilize a flow against turbulent decay.

Notes

1. A detailed discussion of impermeability is given by Haynes and McIntyre (1987, 1990).

2. For further discussion of helicity, see Moffatt (1969), Moffatt and Tsinober (1992) and Salmon (1998).

Required Reading

• Gill, sections 7.9, 7.11.

• Salmon, chapter 2.

• Holton, chapter 4.
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3 The Exact Primitive Equations
3.1 Exact primitive equations in spherical coordinates

The vector equation of motion (1.35) is a compact statement that can be applied in any noninertial reference
frame with rotation Ω. For applications we need to pick a particular coordinate system (e.g., Cartesian, cylindrical,
spherical) and expand (1.35) into its components. For numerical weather prediction and general circulation modeling
the spherical coordinates (λ,φ, r) are commonly used. Here λ is the longitude, φ the latitude and r the distance from
the center of the earth.

Substituting a = b = u in the vector formula (A.9) of Appendix A, we obtain (u·∇)u = (∇×u)×u+ 1

2
∇(u·u).

Thus,
Du

Dt
=

∂u

∂t
+ (∇× u) × u + 1

2
∇(u · u), (3.1)

and we can write the equation of motion (1.35) as

∂u

∂t
+ (∇× u) × u + 1

2
∇(u · u) + 2Ω × u = −

1

ρ
∇p + g + F. (3.2)

The metric expression in spherical coordinates is

(dl)2 = h2

λ(dλ)2 + h2

φ(dφ)2 + h2

r(dr)2, (3.3)

where dl is an element of length and hλ = r cos φ, hφ = r, hr = 1. If i, j,k denote unit vectors in the eastward,
northward and vertical directions, we have for the gradient, divergence and curl (see Appendix B for further discussion)

∇p = i
∂p

hλ∂λ
+ j

∂p

hφ∂φ
+ k

∂p

hr∂r
, (3.4)

∇ · u =
1

hλhφhr

[

∂(hφhru)

∂λ
+

∂(hλhrv)

∂φ
+

∂(hλhφw)

∂r

]

, (3.5)

∇× u =
i

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]

+
j

hλhr

[

∂(hλu)

∂r
−

∂(hrw)

∂λ

]

+
k

hλhφ

[

∂(hφv)

∂λ
−

∂(hλu)

∂φ

]

. (3.6)

Let ue be a vector of magnitude Ωr cos φ directed eastward, i.e., ue = iΩr cos φ. Then

∇× ue =
1

r2 cos φ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r cos φi rj k

∂

∂λ

∂

∂φ

∂

∂r

Ωr2 cos2 φ 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= j2Ω cos φ + k2Ω sin φ = 2Ω. (3.7)

Using (3.7) we can write (3.2) as

∂u

∂t
− u ×

[

∇× (u + ue)
]

+ 1

2
∇(u · u) = −

1

ρ
∇p + g + F. (3.8)

We can now write

u ×

[

∇× (u + ue)
]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

u v w

1

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]

1

hλhr

[

∂ (hλ(u + ue))

∂r
−

∂(hrw)

∂λ

]

1

hλhφ

[

∂(hφv)

∂λ
−

∂ (hλ(u + ue))

∂φ

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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or

u ×

[

∇× (u + ue)
]

= i

{

v

hλhφ

[

∂(hφv)

∂λ
−

∂ (hλ(u + ue))

∂φ

]

−
w

hλhr

[

∂ (hλ(u + ue))

∂r
−

∂(hrw)

∂λ

]}

+ j

{

w

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]

−
u

hλhφ

[

∂(hφv)

∂λ
−

∂ (hλ(u + ue))

∂φ

]}

+ k

{

u

hλhr

[

∂ (hλ(u + ue))

∂r
−

∂(hrw)

∂λ

]

−
v

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]}

(3.9)

and

1

2
∇(u · u) = i

∂

hλ∂λ

[

1

2

(

u2 + v2 + w2
)

]

+ j
∂

hφ∂φ

[

1

2

(

u2 + v2 + w2
)

]

+ k
∂

hr∂r

[

1

2

(

u2 + v2 + w2
)

]

. (3.10)

Using (3.9) and (3.10) in (3.8) we can write the component equations as

∂u

∂t
−

v

hλhφ

[

∂(hφv)

∂λ
−

∂ (hλ(u + ue))

∂φ

]

+
w

hλhr

[

∂ (hλ(u + ue))

∂r
−

∂(hrw)

∂λ

]

+
∂

hλ∂λ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

hλ∂λ
= Fλ, (3.11)

∂v

∂t
−

w

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]

+
u

hλhφ

[

∂(hφv)

∂λ
−

∂ (hλ(u + ue))

∂φ

]

+
∂

hφ∂φ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

hφ∂φ
= Fφ, (3.12)

∂w

∂t
−

u

hλhr

[

∂ (hλ(u + ue))

∂r
−

∂(hrw)

∂λ

]

+
v

hφhr

[

∂(hrw)

∂φ
−

∂(hφv)

∂r

]

+
∂

hr∂r

[

1

2
(u2 + v2 + w2)

]

+ g +
1

ρ

∂p

hr∂r
= Fr. (3.13)

Using hλ = r cos φ, hφ = r, hr = 1 and ue = Ωr cos φ we can derive from (3.11)–(3.13) the following rotational
forms of the component equations:

∂u

∂t
− v

[

∂v

r cos φ∂λ
−

∂ ((u + Ωr cos φ) cos φ)

r cos φ∂φ

]

+ w

[

∂ (r(u + Ωr cos φ))

r∂r
−

∂w

r cos φ∂λ

]

+
∂

r cos φ∂λ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

r cos φ∂λ
= Fλ, (3.14)

∂v

∂t
− w

[

∂w

r∂φ
−

∂(rv)

r∂r

]

+ u

[

∂v

r cos φ∂λ
−

∂ ((u + Ωr cos φ) cos φ)

r cos φ∂φ

]

+
∂

r∂φ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

r∂φ
= Fφ, (3.15)

∂w

∂t
− u

[

∂ (r(u + Ωr cos φ))

r∂r
−

∂w

r cos φ∂λ

]

+ v

[

∂w

r∂φ
−

∂(rv)

r∂r

]

+
∂

∂r

[

1

2
(u2 + v2 + w2)

]

+ g +
1

ρ

∂p

∂r
= Fr. (3.16)
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The rotational forms (3.14)–(3.16) can easily be converted into the advective forms

Du

Dt
−

(

2Ω +
u

r cos φ

)(

v sin φ − w cos φ

)

+
1

ρ

∂p

r cos φ∂λ
= Fλ, (3.17)

Dv

Dt
+

(

2Ω +
u

r cos φ

)

u sin φ +
vw

r
+

1

ρ

∂p

r∂φ
= Fφ, (3.18)

Dw

Dt
−

(

2Ω +
u

r cos φ

)

u cos φ −
v2

r
+

1

ρ

∂p

∂r
+ g = Fr, (3.19)

where
D

Dt
=

∂

∂t
+ u

∂

r cos φ∂λ
+ v

∂

r∂φ
+ w

∂

∂r
. (3.20)

Equations (3.14)–(3.16), or their advective forms (3.17)–(3.19), are called the nonhydrostatic primitive equations or
the exact primitive equations. They are not widely used at present. For large scale numerical weather prediction and
general circulation modeling two approximations are made—the traditional approximation and the quasi-static ap-
proximation. The traditional approximation involves an approximation to the metric expression while the quasi-static
approximation involves an approximation to the vertical equation (3.19). We shall study these two approximations in
Chapters 4 and 5.

3.2 Summary
To summarize, the exact primitive equations in spherical coordinates are a set of five prognostic equations for

u, v, w, ρ, s and two diagnostic equations for T and p:

Du

Dt
−

(

2Ω +
u

r cos φ

)

(v sin φ − w cos φ) +
1

ρ

∂p

r cos φ∂λ
= Fλ, (3.21)

Dv

Dt
+

(

2Ω +
u

r cos φ

)

u sin φ +
vw

r
+

1

ρ

∂p

r∂φ
= Fφ, (3.22)

Dw

Dt
−

(

2Ω +
u

r cos φ

)

u cos φ −
v2

r
+ g +

1

ρ

∂p

∂r
= Fr, (3.23)

Dρ

Dt
+ ρ

(

∂u

r cos φ∂λ
+

∂(v cos φ)

r cos φ∂φ
+

∂(r2w)

r2∂r

)

= 0, (3.24)

Ds

Dt
=

Q

T
, (3.25)

T = T0

(

ρ

ρ0

)R/cv

es/cv . (3.26)

p = ρRT, (3.27)

where
D

Dt
=

∂

∂t
+ u

∂

r cos φ∂λ
+ v

∂

r∂φ
+ w

∂

∂r
. (3.28)

Equations (3.21)–(3.27) constitute a closed system of seven equations in the seven unknowns u, v, w, ρ, s, T, p.
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Required Reading

• Holton, section 2.3 (Can you find any errors?).

• Gill, section 4.12 (Can you find any errors?).

Problems

1. (a) Prove that (3.21) can be written as the angular momentum principle

D

Dt

[

(Ωr cos φ + u) r cos φ

]

+
1

ρ

∂p

∂λ
= Fλr cos φ.

(b) For zonally symmetric, inviscid flow, compute the zonal wind of a parcel which has risen, at the equator,
from the ocean surface to a height of 16 km above sea level. Assume the zonal velocity was zero at sea level.

(c) Now assume this parcel moves poleward, at 16 km height, to 30 N. What is its zonal velocity at this latitude?

2. Derive the kinetic energy principle from the exact primitive equations (3.21)–(3.23).
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4 Primitive Equations for Shallow Atmospheres
4.1 Primitive equations with the traditional approximation

Let us define the constant a as the radius to mean sea-level and the independent variable z as the height above the
sphere with radius a, so that r = a + z. Now, a = 6371 km while z is less than 20 km for tropospheric models. Thus,
it seems reasonable to approximate the metric coefficients by hλ = a cos φ, hφ = a, hr = 1 and the velocity due
to the earth’s rotation by ue = Ωa cos φ. If we use these approximate expressions for the metric coefficients and the
velocity due to the earth’s rotation in (3.11)–(3.13), we obtain the approximate momentum equations

∂u

∂t
− v

[

∂v

a cos φ∂λ
−

∂ ((u + Ωa cos φ) cos φ)

a cos φ∂φ

]

+ w

[

∂ (u + Ωa cos φ)

∂z
−

∂w

a cos φ∂λ

]

+
∂

a cos φ∂λ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

a cos φ∂λ
= Fλ, (4.1)

∂v

∂t
− w

[

∂w

a∂φ
−

∂v

∂z

]

+ u

[

∂v

a cos φ∂λ
−

∂ ((u + Ωa cos φ) cos φ)

a cos φ∂φ

]

+
∂

a∂φ

[

1

2
(u2 + v2 + w2)

]

+
1

ρ

∂p

a∂φ
= Fφ, (4.2)

∂w

∂t
− u

[

∂ (u + Ωa cos φ)

∂z
−

∂w

a cos φ∂λ

]

+ v

[

∂w

a∂φ
−

∂v

∂z

]

+
∂

∂z

[

1

2
(u2 + v2 + w2)

]

+ g +
1

ρ

∂p

∂z
= Fz. (4.3)

Equations (4.1)–(4.3) are the nonhydrostatic primitive equations with the “traditional” approximation. Note how
they differ from the exact nonhydrostatic primitive equations (3.14)–(3.16). The rotational forms (4.1)–(4.3) can be
converted to the advective forms (4.4)–(4.6). See problem 1.

4.2 Summary
We have now presented two different levels of dynamics: the exact nonhydrostatic primitive equations (Chapter

3) and the nonhydrostatic primitive equations with the traditional approximation. To summarize the nonhydrostatic
primitive equations with the traditional approximation we need the mass conservation principle, the entropy conser-
vation principle, the definition of specific entropy, and the ideal gas law. The complete systems of primitive equations
with the traditional approximation can be summarized as follows:

Du

Dt
−

(

2Ω sin φ +
u tan φ

a

)

v +
1

ρ

∂p

a cos φ∂λ
= Fλ, (4.4)

Dv

Dt
+

(

2Ω sin φ +
u tan φ

a

)

u +
1

ρ

∂p

a∂φ
= Fφ, (4.5)

Dw

Dt
+ g +

1

ρ

∂p

∂z
= Fz, (4.6)

Dρ

Dt
+ ρ

(

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ
+

∂w

∂z

)

= 0, (4.7)

Ds

Dt
=

Q

T
, (4.8)

T = T0

(

ρ

ρ0

)R/cv

es/cv , (4.9)

p = ρRT, (4.10)

where
D

Dt
=

∂

∂t
+ u

∂

a cos φ∂λ
+ v

∂

a∂φ
+ w

∂

∂z
. (4.11)
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Just as with the exact system (3.21)–(3.28), the approximate system (4.4)–(4.11) constitutes a closed system of seven
equations in the seven unknowns u, v, w, ρ, s, T, p. Equations (4.4)–(4.11) involve rather minor approximations to
(3.21)–(3.28) and should give accurate results because the earth’s atmosphere is so shallow.

The nonhydrostatic primitive equations with the traditional approximation are not used much in atmospheric sci-
ence, since they are just as hard to solve as the exact nonhydrostatic primitive equations. However, the nonhydrostatic
primitive equations with the traditional approximation are an important intermediate step in understanding the quasi-
static primitive equations with the traditional approximation, which are the equations commonly used in large-scale
numerical weather prediction and climate modeling. The term “quasi-static” means that a further approximation to
(4.4)–(4.11) is introduced. This is discussed in the next chapter.

Problems

1. Convert the rotational forms (4.1)–(4.3) to the advective forms (4.4)–(4.6) and discuss the differences between
the exact primitive equations (3.21)–(3.28) and the primitive equations with the traditional approximation, (4.4)–
(4.11).

2. Prove that (4.4) can be written as the approximate angular momentum principle

D

Dt

[

(Ωa cos φ + u)a cos φ

]

+
1

ρ

∂p

∂λ
= Fλa cos φ.

Discuss how this is a slightly distorted form of the exact principle, which you derived in problem 1 of Chapter
3. Using the above approximate angular momentum principle, repeat the calculations you did with the exact
principle in problem 1 of Chapter 3. Almost all present NWP models and general circulation models use the
traditional approximation and thus have the above approximate angular momentum principle. How large are the
zonal wind errors in the tropics due to the traditional approximation in such models?

3. Derive the kinetic energy principle from the traditional approximation (4.4)–(4.6). Discuss its differences with
the kinetic energy principle you derived from the exact primitive equations.

4. Some researchers have approximated (3.21) by simply replacing r by a (see Holton’s book, page 37). Note
that this is a different approximation than (4.4). Discuss why this is a bad idea. Hint: Argue from the angular
momentum principle.
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5 The Quasi-static Primitive Equations
5.1 Scale analysis

The quasi-static approximation consists of the traditional approximation plus ignoring Dw/Dt and Fz in (4.6). To
see when the neglect ofDw/Dt is justified, let the pressure and density be divided into a standard atmosphere part and
a deviation therefrom. If the standard atmosphere is defined as being in hydrostatic balance, we have p = ps(z) + p′,
ρ = ρs(z) + ρ′ and ∂ps/∂z = −ρsg. Equation (4.6) can then be written

ρs

(

1 +
ρ′

ρs

)

Dw

Dt
= −

∂p′

∂z
− ρ′g. (5.1)

Assuming |ρ′/ρs| << 1, when is ρs|Dw/Dt| sufficiently small compared with |∂p′/∂z|? It is important to note
that requiring |Dw/Dt| to be small compared to ρ−1

s |∂p′/∂z| is much stricter than requiring |Dw/Dt| to be small
compared to ρ−1|∂p/∂z| because ρ−1

s |∂p′/∂z| is much smaller than ρ−1|∂p/∂z|. To answer this question we define

V : characteristic magnitude of u and v; W : characteristic magnitude of w;
L : characteristic horizontal scale; D : characteristic vertical scale;

1/N : characteristic time scale.

Then we can estimate the order of magnitude of the terms in (4.4)–(4.6) as

Du

Dt
∼ NV,

(

2Ω sin φ +
u tan φ

a

)

v ∼ fV,
1

ρ

∂p

a cos φ∂λ
∼

p′

ρsL
,

Dv

Dt
∼ NV,

(

2Ω sin φ +
u tanφ

a

)

u ∼ fV,
1

ρ

∂p

a∂φ
∼

p′

ρsL
,

ρ
Dw

Dt
∼ ρsNW,

∂p′

∂z
∼

p′

D
.

Two cases arise:

Case (i): N ≥ f .
The balance in the horizontal momentum equations is primarily between the pressure gradient term and the
acceleration term. Thus, p′ ∼ ρsNLV and ρ|Dw/Dt| << |∂p′/∂z| when ρsNW << ρsNLV/D or

(

W/D

V/L

) (

D

L

)2

<< 1.

Case (ii): N ≤ f .
The balance in the horizontal momentum equations is primarily between the pressure gradient term and the
Coriolis term. Thus, p′ ∼ ρsfLV and ρ|Dw/Dt| << |∂p′/∂z| when ρsNW << ρsfLV/D or

N

f

(

W/D

V/L

) (

D

L

)2

<< 1.

Usually W/D
V/L ≤ 1 and (D/L)2 << 1 is sufficient to justify the quasi-static approximation. In a typical extratropical

cyclone D ∼ 10 km and L ∼ 1000 km so that (D/L)2 ∼ 10−4.
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5.2 Summary
We have now presented three different levels of dynamics: the exact primitive equations, the primitive equations

with the traditional approximation, and the quasi-static primitive equations. To summarize, for the exact primitive
equations we have (3.21)–(3.28), for the primitive equations with the traditional approximation we have (4.4)–(4.11),
and for the quasi-static primitive equations we have

Du

Dt
−

(

2Ω sin φ +
u tan φ

a

)

v +
1

ρ

∂p

a cos φ∂λ
= Fλ, (5.2)

Dv

Dt
+

(

2Ω sin φ +
u tan φ

a

)

u +
1

ρ

∂p

a∂φ
= Fφ, (5.3)

1

ρ

∂p

∂z
= −g, (5.4)

Dρ

Dt
+ ρ

(

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ
+

∂w

∂z

)

= 0, (5.5)

Ds

Dt
=

Q

T
, (5.6)

T = T0

(

ρ

ρ0

)R/cv

es/cv . (5.7)

p = ρRT, (5.8)

where
D

Dt
=

∂

∂t
+ u

∂

a cos φ∂λ
+ v

∂

a∂φ
+ w

∂

∂z
. (5.9)

Equations (5.2)–(5.9) constitute a closed system of seven equations in the seven unknowns u, v, w, ρ, s, T, p. Note
that, while w is no longer a predicted variable, it must be listed as one of the unknowns since it appears in the operator
D/Dt and also in the last term of (5.5).

It is sometimes claimed that the quasi-static equations assumeDw/Dt = 0. This claim is erroneous. If it were true,
a parcel could never reverse directions in the vertical. What the quasi-static equations assume is that |Dw/Dt| is small
compared to ρ−1

s |∂p′/∂z|. In fact, the quasi-static equations produce solutions with nonzero Dw/Dt. For example,
the quasi-static equations can accurately simulate the synopic-scale cyclones and anticyclones of midlatitudes. In
typical midlatiude synoptic weather systems, air parcels move eastward through troughs and ridges and, in the process,
gently ascend and descend. Thus, since w alternately changes sign,Dw/Dt is not zero. A similar argument involving
alternate changes in the sign of w can be made for long gravity waves, which the quasi-static equations also accurately
simulate. To actually check that the solutions of the quasi-static system are consistent with the assumptions built into
the system, we should a posteriori test to see if the predicted values of Dw/Dt have magnitude small compared to
ρ−1

s |∂p′/∂z|. If this is indeed true, we can conclude that the solutions produced by the quasi-static equations are very
nearly identical to the solutions that would be produced by the exact primitive equations (which include the Dw/Dt
term in the vertical equation of motion).

Large-scale numerical weather prediction and general circulation modeling is done almost exclusively with the
quasi-static primitive equations, but the z-coordinate is rarely used. Since ρ and g are positive, (5.4) implies that p
monotonically decreases with z, i.e., there is a one-to-one correspondence between p and z. Thus, p could be used as
the vertical coordinate in the quasi-static primitive equations. There are many variations on this theme, e.g., the log of
pressure, pressure raised to the κ power, or pressure normalized by surface pressure. Almost everything we will do in
this book involves some kind of further approximation to (5.2)–(5.9).
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Problems

1. Derive the kinetic energy principle from the quasi-static primitive equations (5.2)–(5.4). Compare it with the
kinetic energy principle derived from the exact primitive equations (problem 2 of Chapter 3) and with the kinetic
energy principle derived from the primitive equations with the traditional approximation (problem 3 of Chapter
4).

2. Some researchers have approximated (3.23) by the hydrostatic equation but have left (3.21) and (3.22) un-
changed. Discuss why this is a bad idea.
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6 Transformation of the Quasi-static Primitive Equation to a Generalized
Vertical Coordinate

6.1 The general η(p, ps, θ) coordinate
Using the longitude λ, the latitude φ, and the physical height z as the independent spatial coordinates, the quasi-

static primitive equations (with the traditional approximation) for inviscid, adiabatic flow are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +
1

ρ

(

∂p

a cosφ∂λ

)

z

= 0, (6.1)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +
1

ρ

(

∂p

a∂φ

)

z

= 0, (6.2)

g +
1

ρ

∂p

∂z
= 0, (6.3)

1

ρ

Dρ

Dt
+

(

∂u

a cosφ∂λ

)

z

+

(

∂(v cosφ)

a cosφ∂φ

)

z

+
∂w

∂z
= 0, (6.4)

cp
DT

Dt
−

1

ρ

Dp

Dt
= 0, (6.5)

p = ρRT, (6.6)
where

D

Dt
=

(

∂

∂t

)

z

+ u

(

∂

a cosφ∂λ

)

z

+ v

(

∂

a∂φ

)

z

+ w
∂

∂z
(6.7)

is the material derivative. Equations (6.1)–(6.6) constitute a closed system of six equations in the six dependent
variables u, v, w, ρ, T, p, each of which is a function of the independent variables (λ,φ, z, t). Note that subscripts have
been used in order to explicitly show that z is held fixed during the differentiations with respect to t, λ and φ.

We shall now transform (6.1)–(6.7) to the new independent variables (λ,φ, η, t), where the new vertical coordinate
η(p, ps, θ) is some function of the pressure p, the surface pressure ps and the potential temperature θ. After we
complete the transformation we shall consider several special cases, such as η = p, η = ln(p0/p), η = (cpθ0/g)[1 −
(p/p0)κ], η = p/ps, and η = θ.

We begin by transforming the material derivative (6.7). The required transformation formulas are
(

∂

∂t

)

z

=

(

∂

∂t

)

η

+

(

∂η

∂t

)

z

∂

∂η
, (6.8)

(

∂

a cosφ∂λ

)

z

=

(

∂

a cosφ∂λ

)

η

+

(

∂η

a cosφ∂λ

)

z

∂

∂η
, (6.9)

(

∂

a∂φ

)

z

=

(

∂

a∂φ

)

η

+

(

∂η

a∂φ

)

z

∂

∂η
, (6.10)

∂

∂z
=
∂η

∂z

∂

∂η
. (6.11)

Adding (6.8) to the sum of u times (6.9), v times (6.10), and w times (6.11), and then comparing the result to (6.7),
we obtain (6.26) below, where η̇ = Dη/Dt is the rate at which the parcel is crossing the η surfaces.

To transform the continuity equation (6.4), we first apply (6.9) to u and (6.10) to v cosφ to obtain
(

∂u

a cosφ∂λ

)

z

=

(

∂u

a cosφ∂λ

)

η

+
∂u

∂η

(

∂η

a cosφ∂λ

)

z

, (6.12)

(

∂(v cosφ)

a cosφ∂φ

)

z

=

(

∂(v cosφ)

a cosφ∂φ

)

η

+
∂v

∂η

(

∂η

a∂φ

)

z

, (6.13)
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the left hand sides of which are the second and third terms in (6.4). To transform the fourth term in (6.4) we first note
that

∂η̇

∂η
=

∂

∂η

(

Dη

Dt

)

=
∂z

∂η

∂

∂z

[(

∂η

∂t

)

z

+ u

(

∂η

a cosφ∂λ

)

z

+ v

(

∂η

a∂φ

)

z

+ w
∂η

∂z

]

.

After some rearrangement this can be written as

∂w

∂z
=
∂η̇

∂η
−
∂z

∂η

D

Dt

(

∂η

∂z

)

−
∂u

∂η

(

∂η

a cosφ∂λ

)

z

−
∂v

∂η

(

∂η

a∂φ

)

z

. (6.14)

Using (6.12)–(6.14) in the continuity equation (6.4), we obtain

D ln ρ

Dt
−
∂z

∂η

D

Dt

(

∂η

∂z

)

+

(

∂u

a cosφ∂λ

)

η

+

(

∂(v cosφ)

a cosφ∂φ

)

η

+
∂η̇

∂η
= 0. (6.15)

Since ρ > 0, the hydrostatic relation (6.3) can be written as

ρ = −
1

g

∂p

∂z
= −

1

g

∂p

∂η

∂η

∂z
= m

∣

∣

∣

∣

∂η

∂z

∣

∣

∣

∣

, (6.16)

where the pseudo-densitym is defined by

m =
1

g

∣

∣

∣

∣

∂p

∂η

∣

∣

∣

∣

. (6.17)

The material derivative of (6.16) yields

D ln ρ

Dt
=

D lnm

Dt
+

D ln |∂η/∂z|

Dt
. (6.18)

Substitution of (6.18) into (6.15) yields the transformed continuity equation (6.23), given below. One way of un-
derstanding why we call g−1|∂p/∂η| the pseudo-density is to write the hydrostatic relation in the differential form
−g−1dp = ρdz, which can also be written as

1

g

∣

∣

∣

∣

∂p

∂η

∣

∣

∣

∣

∣

∣a2 cosφ dλ dφ dη
∣

∣ = ρ
∣

∣a2 cosφ dλ dφ dz
∣

∣ .

Since the right hand side is the density ρ times the element of volume |a2 cosφ dλ dφ dz|, the left hand side can be
interpreted as the pseudodensity g−1|∂p/∂η| times the element of pseudo-volume |a2 cosφ dλ dφ dη|.

The horizontal components of the pressure gradient force can be expressed in several ways. For example, in the
zonal momentum equation we have the equivalent forms

1

ρ

(

∂p

∂λ

)

z

=

(

∂Φ

∂λ

)

p

=

(

∂Φ

∂λ

)

η

+
1

ρ

(

∂p

∂λ

)

η

=

(

∂M

∂λ

)

η

− Π

(

∂θ

∂λ

)

η

=

(

∂M

∂λ

)

θ

, (6.19)

where Φ = gz is the geopotential,M = cpT + Φ the Montgomery potential, and Π = cp(p/p0)κ the Exner function.
In summary, the quasi-static primitive equations in the η coordinate are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +
1

ρ

(

∂p

a cosφ∂λ

)

η

+

(

∂Φ

a cosφ∂λ

)

η

= 0, (6.20)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +
1

ρ

(

∂p

a∂φ

)

η

+

(

∂Φ

a∂φ

)

η

= 0, (6.21)

∂Φ

∂η
= −α

∂p

∂η
, (6.22)

1

m

Dm

Dt
+

(

∂u

a cosφ∂λ

)

η

+

(

∂(v cosφ)

a cosφ∂φ

)

η

+
∂η̇

∂η
= 0, (6.23)
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cp
DT

Dt
−

1

ρ

Dp

Dt
= 0, (6.24)

p = ρRT, (6.25)

where
D

Dt
=

(

∂

∂t

)

η

+ u

(

∂

a cosφ∂λ

)

η

+ v

(

∂

a∂φ

)

η

+ η̇
∂

∂η
(6.26)

is the material derivative. Equations (6.20)–(6.25) constitute a closed system of six equations in the six dependent
variables u, v, η̇, ρ, T, p, each of which is a function of the independent variables (λ,φ, η, t).

6.2 Pressure coordinate
Now consider the special case of pressure coordinates, η = p. In pressure coordinates the pseudo-density (6.17)

becomes m = 1/g, so that the material derivative term in (6.23) vanishes. Thus, pressure coordinates yield the
simplest form of the mass continuity equation. Defining the vertical p-velocity ω by ω = Dp/Dt = η̇, the quasi-static
primitive equations in pressure coordinates are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +

(

∂Φ

a cosφ∂λ

)

p

= 0, (6.27)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +

(

∂Φ

a∂φ

)

p

= 0, (6.28)

∂Φ

∂p
= −α, (6.29)

(

∂u

a cosφ∂λ

)

p

+

(

∂(v cosφ)

a cosφ∂φ

)

p

+
∂ω

∂p
= 0, (6.30)

cp
DT

Dt
− αω = 0, (6.31)

where
D

Dt
=

(

∂

∂t

)

p

+ u

(

∂

a cosφ∂λ

)

p

+ v

(

∂

a∂φ

)

p

+ ω
∂

∂p
. (6.32)

When the context of a discussion indicates that p is being used as the vertical coordinate, the subscripts p are omitted
and the partial derivatives with respect to λ, φ and t are understood to imply that p is held fixed.

Note that (6.30) is not an approximation of (6.23), i.e., (6.30) is “exact” within the context of the quasi-static
system of equations. The reason that (6.30) is so simple is that the pseudo-density is a constant in the p-coordinate.
Although the p-coordinate results in a simple form for the continuity equation, the treatment of the lower boundary
condition can be cumbersome in the p-coordinate.

6.3 Log-pressure coordinate
Now consider the special case of log-pressure coordinates, η = ln(p0/p) ≡ z∗. In log-pressure coordinates the

pseudo-density (6.17) becomes m = p/g = (p0/g)e−z∗ , so that all but the vertical advective part of the material
derivative term in (6.23) vanishes. Defining the vertical ln p-velocity w∗ by w∗ = Dz∗/Dt = η̇, and noting that ω
and w∗ are related by ω = −p0e−z∗

w∗, the quasi-static primitive equations are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +

(

∂Φ

a cosφ∂λ

)

z∗

= 0, (6.33)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +

(

∂Φ

a∂φ

)

z∗

= 0, (6.34)

∂Φ

∂z∗
= RT, (6.35)
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(

∂u

a cosφ∂λ

)

z∗

+

(

∂(v cosφ)

a cosφ∂φ

)

z∗

+
∂w∗

∂z∗
− w∗ = 0, (6.36)

DT

Dt
+ κTw∗ = 0, (6.37)

where
D

Dt
=

(

∂

∂t

)

z∗

+ u

(

∂

a cosφ∂λ

)

z∗

+ v

(

∂

a∂φ

)

z∗

+ w∗
∂

∂z∗
. (6.38)

When the context of a discussion indicates that z∗ is being used as the vertical coordinate, the subscripts z∗ are omitted
and the partial derivatives with respect to λ, φ and t are understood to imply that z∗ is held fixed. The log-pressure
coordinate is extensively used in middle atmosphere dynamics, for example in the analysis of the vertical propagation
of Rossby waves from the troposphere into the stratosphere and mesosphere. We shall use this coordinate in our
discussion of vertical normal modes in Chapter 9.

6.4 Pseudo-height coordinate
Now consider the special case of the pseudo-height coordinate, η = (cpθ0/g)[1 − (p/p0)κ] ≡ ẑ. In the pseudo-

height coordinate the pseudo-density (6.17) becomes m = (p0/Rθ0)(1 − ẑ/ẑa)(1−κ)/κ ≡ ρ̂(ẑ), where ẑa = cpθ0/g
is the depth of an adiabatic atmosphere. Note that the pseudo-density ρ̂(ẑ) is a known function of the pseudo-height
ẑ, and is to be sharply distinguished from the physical space density ρ. Again, all but the vertical advective part of the
material derivative term in (6.23) vanishes. Defining the vertical ẑ-velocity ŵ by ŵ = Dẑ/Dt = η̇, and noting that ω
and ŵ are related by ω = −gρ̂ŵ, the quasi-static primitive equations in pseudo-height coordinates are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +

(

∂Φ

a cosφ∂λ

)

ẑ

= 0, (6.39)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +

(

∂Φ

a∂φ

)

ẑ

= 0, (6.40)

∂Φ

∂ẑ
=

g

θ0
θ, (6.41)

(

∂u

a cosφ∂λ

)

ẑ

+

(

∂(v cosφ)

a cosφ∂φ

)

ẑ

+
∂(ρ̂ŵ)

ρ̂∂ẑ
= 0, (6.42)

Dθ

Dt
= 0, (6.43)

where
D

Dt
=

(

∂

∂t

)

ẑ

+ u

(

∂

a cosφ∂λ

)

ẑ

+ v

(

∂

a∂φ

)

ẑ

+ ŵ
∂

∂ẑ
. (6.44)

When the context of a discussion indicates that ẑ is being used as the vertical coordinate, the subscripts ẑ are omitted
and the partial derivatives with respect to λ, φ and t are understood to imply that ẑ is held fixed. Although the continuity
equation (6.42) is not quite as simple as the p-coordinate version (6.30), equations (6.39)–(6.44) are often preferred
over (6.27)–(6.32) because the same variable θ appears on the right hand side of (6.41) and in the material conservation
relation (6.43), and because the thermal wind equations take a simple form in the pseudo-height coordinate. Thus, the
pseudo-height coordinate is extensively used in quasi-geostrophic and semi-geostrophic studies of baroclinic waves
and fronts (see Chapters 13 and 14). We shall use this coordinate in the derivation of the quasi-geostrophic and
semi-geostrophic Q-vectors, where we take advantage of the simple form of the thermal wind equations.

6.5 Sigma coordinate
Now consider the special case of the sigma coordinate, η = p/ps ≡ σ. In the sigma coordinate the pseudo-

density (6.17) becomesm = ps/g. Note that the pseudo-density ps/g is a function of (λ,φ, t). Now, only the vertical
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advective part of the material derivative term in (6.23) vanishes. Defining the vertical σ-velocity σ̇ by σ̇ = Dσ/Dt =
η̇, and noting that ω and σ̇ are related by ω = psσ̇ + σDps/Dt, the quasi-static primitive equations are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +

(

∂Φ

a cosφ∂λ

)

σ

+ σα
∂ps

a cosφ∂λ
= 0, (6.45)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +

(

∂Φ

a∂φ

)

σ

+ σα
∂ps

a∂φ
= 0, (6.46)

∂Φ

∂σ
= −psα, (6.47)

1

ps

Dps

Dt
+

(

∂u

a cosφ∂λ

)

σ

+

(

∂(v cosφ)

a cosφ∂φ

)

σ

+
∂σ̇

∂σ
= 0, (6.48)

Dθ

Dt
= 0, (6.49)

where
D

Dt
=

(

∂

∂t

)

σ

+ u

(

∂

a cosφ∂λ

)

σ

+ v

(

∂

a∂φ

)

σ

+ σ̇
∂

∂σ
. (6.50)

When the context of a discussion indicates that σ is being used as the vertical coordinate, the subscripts σ are omitted
and the partial derivatives with respect to λ, φ and t are understood to imply that σ is held fixed. In sigma coordinates
the lower boundary is the coordinate surface σ = 1. Because this greatly simplifies the lower boundary condition in
models with realistic topography, sigma coordinates and their generalizations are widely used in numerical weather
prediction and climate modeling. One disadvantage of this coordinate is that the pressure gradient force splits into two
terms, and, near steep topography, these two terms tend to have the same large magnitude but opposite sign. This can
lead to numerical errors and poor simulation of flow features near steep topography, such as the Andes.

In sigma coordinate models, (6.48) is usually put into a form which incorporates the upper and lower boundary
conditions σ̇ = 0 at σ = 0, 1. Dropping the subscripts on the partial derivatives, the continuity equation (6.48) can be
written in flux form as

∂ps

∂t
+

∂(psu)

a cosφ∂λ
+
∂(psv cosφ)

a cosφ∂φ
+
∂(psσ̇)

∂σ
= 0. (6.51)

Integrating (6.51) vertically from σ = 0 to σ = 1, using the upper and lower boundary conditions, we obtain

∂ps

∂t
= −

∫ 1

0

(

∂(psu)

a cosφ∂λ
+
∂(psv cosφ)

a cosφ∂φ

)

dσ. (6.52)

Similarly, integrating (6.51) from the upper boundary to σ, using the upper boundary condition, we obtain

psσ̇ = σ

∫ 1

0

(

∂(psu)

a cosφ∂λ
+
∂(psv cosφ)

a cosφ∂φ

)

dσ′ −

∫ σ

0

(

∂(psu)

a cosφ∂λ
+
∂(psv cosφ)

a cosφ∂φ

)

dσ′. (6.53)

Equations (6.52) and (6.53) replace (6.48), with (6.52) used to predict the surface pressure and (6.53) used to diagnose
the “vertical velocity” σ̇. It might seem that we have obtained two equations from one equation. However, we have
incorporated the boundary conditions, and it should be noted that (6.52) contains only vertically integrated information.

6.6 Isentropic coordinate
Now consider the special case of isentropic coordinates, η = θ. In isentropic coordinates the pseudo-density (6.17)

becomesm = −g−1∂p/∂θ ≡ σ. Note that the symbol σ is used for two entirely different quantities in isentropic and
sigma coordinates. The quasi-static primitive equations in isentropic coordinates are

Du

Dt
−

(

2Ω sinφ+
u tanφ

a

)

v +

(

∂M

a cosφ∂λ

)

θ

= 0, (6.54)

Dv

Dt
+

(

2Ω sinφ+
u tanφ

a

)

u +

(

∂M

a∂φ

)

θ

= 0, (6.55)
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∂M

∂θ
= Π, (6.56)

1

σ

Dσ

Dt
+

(

∂u

a cosφ∂λ

)

θ

+

(

∂(v cosφ)

a cosφ∂φ

)

θ

+
∂θ̇

∂θ
= 0, (6.57)

where Π = cp(p/p0)κ is the Exner function, and

D

Dt
=

(

∂

∂t

)

θ

+ u

(

∂

a cosφ∂λ

)

θ

+ v

(

∂

a∂φ

)

θ

+ θ̇
∂

∂θ
. (6.58)

When the context of a discussion clearly indicates that θ is being used as the vertical coordinate, the subscripts θ
are omitted and the partial derivatives with respect to λ, φ and t are understood to imply that θ is held fixed. The
expression for potential vorticity is very simple in isentropic coordinates. Another advantage of isentropic coordinates
is that, for adiabatic flow (i.e., θ̇ = 0), the last term in the material derivative (6.58) disappears. In the adiabatic case,
an isentropic surface is a material surface (i.e., it is always composed of the same parcels).

6.7 The ECMWF hybrid vertical coordinate
Simmons and Burridge (1981) proposed

η =
p

ps
+

(

p

ps
− 1

) (

p

ps
−

p

pc

)

, (6.59)

where pc is a constant. Note that η = 1 when p = ps and η = 0 when p = 0.

6.8 Arakawa-Konor hybrid σ-p vertical coordinate
Arakawa and Konor (1994) proposed the hybrid coordinate

σ = F (p, ps) = a(p, pS)

(

p − pT

pS − pT

)

+ [1 − a(p, ps)]f(p), (6.60)

where a(p, pS) is a function satisfying 0 ≤ a(p, pS) ≤ 1 for pT ≤ p ≤ pS . When a(p, pS) = 1 and pT = 0,
(6.60) reduces to σ = p/pS , the original σ-coordinate proposed by Phillips (1957). When a(p, pS) = p/pS pT = 0,
and f(p) = p/pC , where pC is a constant, (6.60) reduces to (6.59), the hybrid coordinate proposed by Simmons and
Burridge (1981).

6.9 Konor-Arakawa hybrid θ-p-pS vertical coordinate
Konor and Arakawa (1997) proposed the hybrid coordinate

ζ = f(σ) + g(σ)θ, (6.61)

where
σ =

ps − p

ps − pT

and where g(σ) ≈ 1 everywhere except near the surface. Require dζ/dσ > 0, so that

df

dσ
+

dg

dσ
θ + g

∂θ

∂σ
> 0. (6.62)

Given g(σ) find f(σ) from
df

dσ
+

dg

dσ
θmin + g

(

∂θ

∂σ

)

min

= 0. (6.63)

For example, if we choose

g(σ) =
1 − e−ασ

1 − e−α
, (6.64)
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then
f(σ) = θmin [1 − g(σ)] +

(

∂θ

∂σ

)

min

1

1 − e−α

(

1 − σ +
1

α
e−α −

1

α
e−ασ

)

, (6.65)

which results in the vertical coordinate

ζ(θ,σ) =
1

1 − e−α

{

θmin

(

e−ασ − e−α
)

+ θ
(

1 − e−ασ
)

+

(

∂θ

∂σ

)

min

[

1 − σ −
1

α

(

e−ασ − e−α
)

]}

. (6.66)

There are three parameters: α, θmin, (∂θ/∂σ)min. Typical numerical values are α = 10, θmin = 250K, and
(∂θ/∂σ)min = −3K.

Problems

1. Consider an arbitrary scalar ψ, which is a function of (λ,φ, z, t). We want to transform to a new set of in-
dependent variables (Λ,Φ, η, T ). Thus, consider ψ (λ(Λ,Φ, η, T ),φ(Λ,Φ, η, T ), z(Λ,Φ, η, T ), t(Λ,Φ, η, T )).
For the special case Λ = λ, Φ = φ, and T = t, prove that

(

∂ψ

∂λ

)

η

=

(

∂ψ

∂λ

)

z

+

(

∂z

∂λ

)

η

∂ψ

∂z
.

2. Use the result of problem 1 to derive the following σ-coordinate form of the pressure gradient force:

1

ρ

(

∂p

∂λ

)

z

=
σ

ρ

(

∂ps

∂λ

)

σ

+ g

(

∂z

∂λ

)

σ

.

Explain why the subscript σ on the first term on the right hand side can be dropped without confusion. Explain
how the two terms on the right hand side tend to be large and of opposite sign near steep topography.

3. Use the result of problem 1 to derive the following θ-coordinate form of the pressure gradient force:

1

ρ

(

∂p

∂λ

)

z

=

(

∂M

∂λ

)

θ

.
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7 Divergent Barotropic Primitive Equations (Shallow Water Equations)
7.1 Horizontal momentum and continuity equations

The terms “divergent barotropic primitive equations” and “shallow water primitive equations” are used syn-
onymously. The shallow water equations can be considered a special case of the quasi-static primitive equations
(6.1)–(6.4). To obtain the shallow water equations we consider a thin sheet of constant density fluid covering the
earth. The fluid is assumed to have a free upper surface, so that its depth h is a function of (λ,φ, t). Since ρ is
a constant, the hydrostatic equation ∂p/∂z = −ρg can be easily integrated from z to h(λ,φ, t), which results in
p(λ,φ, z, t) = ρg [h(λ,φ, t) − z]. This equation states that the pressure at level z is simply the weight of fluid in the
column above level z. The pressure gradient force per unit mass in the eastward and northward directions can now be
written as

1

ρ

∂p

a cos φ∂λ
= g

∂h

a cos φ∂λ
and

1

ρ

∂p

a∂φ
= g

∂h

a∂φ
. (7.1)

Although the pressure is a function of z, the pressure gradient is not a function of z. If u and v are initially independent
of z, they will be predicted by (6.1) and (6.2) to remain independent of z. Thus, u(λ,φ, t) and v(λ,φ, t) obey (7.4)
and (7.5) below, with the material derivative given by (7.7). Note that, even though w ̸= 0, the vertical advection terms
disappear from the material derivative (7.7) because ∂u/∂z = ∂v/∂z = 0.

Under the assumption of constant density, the continuity equation (6.4) reduces to

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ
+

∂w

∂z
= 0. (7.2)

If we integrate (7.2) from z = 0 to z = h, under the assumption that w = 0 at z = 0, we obtain

h

(

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ

)

+ w(h) = 0. (7.3)

Since w(h) = Dh/Dt, (7.3) reduces to (7.6) below.
In summary, the governing equations for an incompressible, inviscid, shallow water fluid on the sphere are

Du

Dt
−

(

2Ω sin φ +
u tanφ

a

)

v + g
∂h

a cos φ∂λ
= 0, (7.4)

Dv

Dt
+

(

2Ω sin φ +
u tanφ

a

)

u + g
∂h

a∂φ
= 0, (7.5)

Dh

Dt
+ h

(

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ

)

= 0, (7.6)

where

D

Dt
=

∂

∂t
+ u

∂

a cos φ∂λ
+ v

∂

a∂φ
. (7.7)

Equations (7.4)–(7.6) constitute a closed system of three equations in the three dependent variables u, v, h, all of which
are functions of the independent variables (λ,φ, t).

Even though they omit vertical structure, the shallow water equations are used extensively in geophysical fluid
dynamics. The literature on any problem involving primarily the horizontal aspects of the flow will almost certainly
contain applications of shallow water theory. Examples include horizontal wave propagation (e.g., geostrophic adjust-
ment) and barotropic instability problems. The shallow water equations are also a test bed for the horizontal spatial
discretization (e.g., finite difference, finite element, spectral) and temporal discretization schemes used in numerical
weather prediction models and general circulation models. The golden rule seems to be that, if the discretization
scheme won’t work on the shallow water equations, then it won’t work on the more complicated equations.
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7.2 Potential vorticity principle for the shallow water equations
To derive the shallow water potential vorticity equation we first write the momentum equations (7.4)–(7.5) in their

rotational form

∂u

∂t
− ζv +

∂

a cos φ∂λ

[

gh + 1

2
(u2 + v2)

]

= 0, (7.8)

∂v

∂t
+ ζu +

∂

a∂φ

[

gh + 1

2
(u2 + v2)

]

= 0, (7.9)

where
ζ = 2Ω sin φ +

∂v

a cos φ∂λ
−

∂(u cos φ)

a cos φ∂φ
(7.10)

is the absolute vorticity. Cross-differentiating (7.8) and (7.9) we obtain

Dζ

Dt
+ ζ

(

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ

)

= 0. (7.11)

Eliminating the divergence between (7.11) and (7.6) we obtain

DP

Dt
= 0, (7.12)

where
P =

(

h̄

h

)

ζ =
h̄

h

(

2Ω sin φ +
∂v

a cos φ∂λ
−

∂(u cos φ)

a cos φ∂φ

)

. (7.13)

Here we have introduced h̄, the constant mean depth of the fluid, so that the potential vorticity P will have the same
units as the absolute vorticity ζ. We can now interpret the potential vorticity P as the absolute vorticity a fluid column
would acquire if its actual depth h were changed to the reference depth h̄. If h < h̄, then P > ζ and the column
must be stretched to acquire the reference depth. Conversely, if h > h̄, then P < ζ and the column must be squashed
to acquire the reference depth. It is helpful for some to think about an analogy between potential temperature and
potential vorticity. Potential temperature is the temperature the fluid would acquire if it moved adiabatically to a
reference pressure. Potential vorticity is the vorticity the fluid would acquire if it were vertically stretched or shrunk
to a reference depth.

Since D/Dt is the derivative following a fluid column, (7.12) says that the absolute vorticity of the column and
the depth of the column must change in such a way that the ratio ζ/h is invariant. The potential vorticity conservation
relation (7.12) becomes a powerful tool when the flow is nearly balanced (e.g., geostrophically balanced). Then u
and v are geostrophically related to h, so that instead of depending on u, v and h, the potential vorticity depends only
on h. In fact, h can be recovered from P , although this invertibility principle is somewhat complicated because it
requires solving a second order, elliptic, partial differential equation for h. In Chapter 10 we shall study the simplest,
linear, geostrophic adjustment problem. The inversion of PV to find the geostrophically balanced h will turn out to be
a central part of geostrophic adjustment theory.

7.3 Some numerical solutions
As an application of the shallow water equations let us now consider the breakdown of a zonally symmetric PV

strip. This is an idealization of the lower tropospheric flow associated with the Intertropical Convergence Zone (ITCZ).
The initial absolute vorticity field is given by

ζ(λ,φ, 0) =

{

2Ω sin φ + ξs for |φ − φc| ≤ φw/2,
2Ω sin φ otherwise,

(7.14)

where φc, φw and ξs are the central latitude, width and magnitude of the vorticity strip, respectively. For the calcula-
tions shown here φc = 15◦N, φw = 7◦ and ξs = 3.0 × 10−5 s−1.

The meridional gradient of absolute vorticity is negative on the northern edge of the PV strip described above and
positive everywhere else. Hence, there is a reversal in the poleward gradient of PV and Rayleigh’s necessary condition
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for barotropic instability of a nondivergent flow is satisfied. This means that counterpropagating vorticity waves are
possible, with the wave on the poleward edge of the strip propagating eastward relative to the zonal flow and the wave
on the equatorward edge of the strip propagating westward relative to the zonal flow. On the poleward (equatorward)
edge of the PV strip the easterly (westerly) flow opposes the relative eastward (westward) propagation of the vorticity
wave. In fact, these counterpropagating waves can phase lock and amplify, a result closely connected with the Fjørtoft
necessary condition for instability of nondivergent, barotropic flow (Drazin and Reid 1981). Of course, the simulations
to be presented here use the divergent barotropic model so the above nondivergent Rayleigh and Fjørtoft theorems are
not strictly applicable. However, if the more general divergent barotropic stability results of Ripa (1983) are used, the
conclusions concerning the possible instability of the above flow are unchanged.

A nondivergent linear normal mode stability analysis (Dritschel and Polvani 1992) of the aforementioned PV strip
was calculated. The most unstable mode obtained has zonal wavenumber nine, a westward phase speed of 2.3 ms−1

and an e-folding time of 2.1 days. In the begining of the nonlinear shallow water simulation the fluid is provided
with a finite amplitude initial perturbation which will grow by extracting energy from the mean flow through the
barotropic instability process. A natural choice for this perturbation is the most unstable mode calculated in the linear
stability analysis. Hence, in the shallow water simulation the PV strip was initially perturbed with a wavenumber nine
disturbance having an amplitude of 10−7 s−1.

In the shallow water simulation, the mean initial fluid height, h̄, was set to 450 m which implies a gravity wave
phase speed of 67.1 ms−1 and an equatorial Rossby length

[

a(gh̄)1/2/(2Ω)
]1/2 of 1712 km. Nonlinear balance (Char-

ney 1960) was initially assumed. The initial zonal wind difference across the PV strip was approximately 19 ms−1.
The height, wind and PV fields were nearly zonally symmetric. After five days (Fig. 7.1a), the cyclonic PV strip and
corresponding mass and wind fields are undulating due to the growth of the initially imposed perturbation through
barotropic instability. During breakdown the high PV is pooled into cyclones that are connected by high PV filaments.
These cyclones are initially zonally elongated (Fig. 7.1b). As breakdown proceeds, the cyclones tend to axisym-
metrize (Fig. 7.1c) while the filaments become thinner and wrap around the cyclones. Axisymmetrization occurs as
PV is stripped out of the cyclone core forming the PV filaments. Strain and adverse shear created by the cyclone
prevent the PV filaments from breaking down due to barotropic instability. These PV filaments may be related to the
outer spiral bands of hurricanes. At 15 days (Fig. 7.1c) the filaments of high PV that linked the cyclones have been
detached. This occurs because the model dissipation is stronger in the smaller scales.

The horizontal scale of the resulting instabilities is approximately 3800 km with a westward propagation of about
2.7 ms−1. Breakdown occurs sooner when the amplitude of the initial imposed perturbation is larger. In fact, this
suggests that if easterly waves propagate from the Atlantic into the East Pacific they may initiate and/or accelerate the
ITCZ breakdown process in the latter region.

In this simulation there was exchange of mass between the two hemispheres with intrusion of negative (positive)
PV air from the Southern (Northern) into the Northern (Southern) Hemisphere (Fig. 7.1c). In these regions the neces-
sary condition for occurrence of inertial instability, that is fP < 0, is met. However, inertially unstable modes have
very slow growth rates for flows with large h̄ and therefore are not apparent in any of the simulations shown here.

Additional simulations (not shown) reveal the effect of changing the width and intensity of the PV strip. In
agreement with linear normal mode stability analysis, wider (narrower) PV strips broke down into larger (smaller)
cyclones and an increase (decrease) in shear resulted in faster (slower) breakdown.

Although time averages of zonal winds in the East Pacific do not have meridional shear as large as the one used
in this experiment, it is possible that high shear exists on individual days. Also, as seen in the linear normal mode
stability analysis, weaker shear profiles will break down as well, but with slower growth rates.

As a second application of the shallow water equations let us consider the movement of five intense cyclonic
vortices (hurricanes) uniformly spaced along 15N at t = 0. The atmosphere outside the vortices is assumed to be at
rest initially in Fig. 7.2a but to have low latitude easterlies and midlatitude westerlies in Fig. 7.3a. Figures 7.2a–d and
Figs. 7.3a–d display the PV contours and the wind vectors at 1,4,7,11 days. Note that the vortices propagate toward
the northwest and generate Rossby waves to their east. In Fig. 7.2 the Rossby waves evolve into broadening troughs
while in Fig. 7.3 the Rossby waves evolve into thinning troughs which trail off to the southwest. The thinning troughs
look very much like the so-called tropical upper tropospheric troughs (TUTTS) observed in nature.
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Figure 7.1: Breakdown of a 4.5◦ wide zonally symmetric vorticity strip centered at 10N with maximum relative
vorticity 3.0 × 10−5 s−1. The displayed fields are fluid depth (m), PV (s−1), and winds (m s−1) at (a) 5 days, (b) 10
days, and (c) 15 days. From Nieto Ferreira and Schubert 1997.
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Figure 7.1: (Continued)
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Figure 7.1: (Continued)
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Figure 7.2: The movement of five model tropical cyclones embedded in an environment at rest. The displayed fields are
wind (m s−1) and PV (s−1) at (a) 1 day, (b) 4 days, (c) 7 days, and (d) 11 days. From Nieto Ferreira and Schubert 1999.
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Figure 7.2: (Continued)
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Figure 7.2: (Continued)
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Figure 7.2: (Continued)
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Figure 7.3: The movement of five model tropical cyclones embedded in an environment of low latitude easterlies and
midlatitude westerlies. The displayed fields are wind (m s−1) and PV (s−1) at (a) 1 day, (b) 4 days, (c) 7 days, and (d)
11 days. From Nieto Ferreira and Schubert 1999.
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Figure 7.3: (Continued)
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Figure 7.3: (Continued)
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Figure 7.3: (Continued)
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Problems

1. Prove that the rotational forms (7.8)–(7.9) are equivalent to the advective forms (7.4)–(7.5). Explain why it is
easier to derive the vorticity equation from (7.8)–(7.9) rather than from (7.4)–(7.5).

2. From the shallow water equations (7.4)–(7.6) derive the total energy principle

∂
{

h
[

1

2
(u2 + v2) + 1

2
gh

]}

∂t
+

∂
{

hu
[

1

2
(u2 + v2) + gh

]}

a cos φ∂λ
+

∂
{

hv cos φ
[

1

2
(u2 + v2) + gh

]}

a cos φ∂φ
= 0.

By integrating this result over the sphere, prove that

d

dt

∫ π/2

−π/2

∫ 2π

0

h
[

1

2
(u2 + v2) + 1

2
gh

]

a cos φ dλ dφ = 0.

This shows that the global integral of the kinetic plus potential energy is invariant with time.

7-15



CSU ATS601/602 Fall 2008

8 Nondivergent Barotropic Equations
8.1 From the divergent barotropic model to the nondivergent barotropic model

The nondivergent barotropic model is a special case of the divergent barotropic model (or shallow water model).
In the nondivergent model the continuity equation (7.6) is replaced by

∂u

a cosφ∂λ
+
∂(v cosφ)

a cosφ∂φ
= 0, (8.1)

which is a statement that the horizontal flow is nondivergent. When the flow is horizontally nondivergent, we can
express the horizontal velocity components u and v in terms of a single variable, the streamfunction ψ, i.e.,

u = −
∂ψ

a∂φ
, v =

∂ψ

a cosφ∂λ
. (8.2)

Using (8.2) we see that (8.1) is automatically satisfied and need no longer be considered, i.e., we have reduced the
number of unknowns and equations by one. With (8.1) the vorticity equation (7.11) reduces to

Dζ

Dt
= 0, (8.3)

where

ζ = 2Ω sinφ+
∂v

a cosφ∂λ
−
∂(u cosφ)

a cosφ∂φ

= 2Ω sinφ+
∂2ψ

a2 cos2 φ∂λ2
+

∂

a cosφ∂φ

(

cosφ
∂ψ

a∂φ

)

= 2Ω sinφ+ ∇2ψ.

(8.4)

Equation (8.3) is a statement of the material conservation of absolute vorticity.
Using (8.2) and (8.4), we can write (8.3) as

∂∇2ψ

∂t
−

∂ψ

a∂φ

∂∇2ψ

a cosφ∂λ
+

∂ψ

a cosφ∂λ

∂∇2ψ

a∂φ
+

2Ω

a2

∂ψ

∂λ
= 0, (8.5)

so that the nondivergent barotropic model consists of the single equation (8.5) in the single unknown ψ(λ,φ, t).
The nondivergent barotropic model is probably the simplest of all atmospheric models. Despite its simplicity, the
nondivergent barotropic model is extremely rich in terms of the phenomena it can describe. Note that (8.5) contains
two nonlinear terms (the second and third terms) and one linear term (the fourth term). The linear term gives rise to
Rossby-Haurwitz waves, which have intricate dispersion properties. The nonlinear terms give rise to two-dimensional
turbulence, which has some striking contrasts with three-dimensional turbulence. One of the first to describe the
energy cascade that occurs in three-dimensional turbulence was Lewis Fry Richardson (1922), who was inspired by
Jonathan Swift’s verse:

So, nat’ralists observe, a flea
Hath smaller fleas that on him prey;

And these have smaller yet to bite ’em,
And so proceed ad infinitum.

Richardson slightly modified this to:

Big whirls have little whirls
that feed on their velocity,

and little whirls have lesser whirls,
and so on, to viscosity.

While energy cascades to smaller scales in three-dimensional turbulence, it can cascade the other direction in two-
dimensional turbulence. In other words, a stirred vorticity field with fine-scale structure can evolve into large-scale,
coherent structures in two-dimensional turbulence, as we shall see next.
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Figure 8.1: Vorticity contours at t = 0, 2.5, 16.5, 37.0 dimensionless time units. Time is made dimensionless by
2πV −1/2, the mean eddy turnover time. Positive vorticity contours are solid and negative contours are dashed. From
McWilliams 1984.

8.2 Emergence of coherent structures in two-dimensional turbulence
The spherical nondivergent barotropic dynamics governed by (8.5) includes two nonlinear terms that represent

horizontal advection of relative vorticity and a linear term that gives rise to Rossby-Haurwitz waves. To isolate the
nonlinear advective terms, consider two-dimensional flow on an f -plane rather than on a sphere. Then, the linear
Rossby-Haurwitz wave term and all other effects of sphericity disappear, and (8.5) reduces to

∂ζ

∂t
−
∂ψ

∂y

∂ζ

∂x
+
∂ψ

∂x

∂ζ

∂y
= ν∇2ζ, (8.6)

∇2ψ = ζ, (8.7)
where the Laplacian is now expressed in cartesian coordinates as∇2 = ∂2/∂x2 + ∂2/∂y2, and where we have added
a diffusion term, with constant diffusion coefficient ν, to the right hand side of (8.6).

We now present a solution of (8.6)–(8.7). The initial condition on the vorticity ζ is shown in Fig. 8.1a, with positive
vorticity contours solid and negative vorticity contours dashed. This initial condition looks quite chaotic, with small
scale regions of positive and negative vorticity, almost as if the fluid were randomly stirred. As time evolves, small
like-signed vorticity regions begin to merge, and a larger scale structure starts to appear (Fig. 8.1b). Later, coherent
vortices emerge, and it appears that order has evolved from chaos. This is a remarkable property of two-dimensional
turbulence. Figure 8.2 shows the time evolution of the kinetic energy E, the enstrophy V , and the mean wavenumber
k̄, defined below.
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Figure 8.2: Time evolution of kinetic energy E, enstrophy V , and mean wavenumber k̄ for the experiment shown in
Fig. 8.1. From McWilliams 1984.

To better understand this experiment, we now derive the energy and enstrophy principles from (8.6) and (8.7).
Concerning the energy principle, we shall find that all the energy is kinetic, i.e., potential energy and its transformation
to kinetic energy are not part of nondivergent barotropic dynamics. To obtain the kinetic energy principle, multiply
(8.6) by −ψ, which yields

∇ψ ·∇
∂ψ

∂t
−∇ ·

(

ψ∇
∂ψ

∂t

)

+
∂

∂x

(

ψ
∂ψ

∂y
ζ

)

+
∂

∂y

(

−ψ
∂ψ

∂x
ζ

)

= ν∇ · (ζ∇ψ − ψ∇ζ) − νζ2. (8.8)

Now integrate (8.8) over the domain and assume there are no contributions from boundary flux terms. There are many
physical arrangements in which the boundary flux terms vanish, e.g., a doubly periodic region, or a closed region in
which the velocity component normal to the boundary vanishes, or a zonal channel which is periodic in the east-west
direction and has no v component at the north and south boundaries. The integration of (8.8) then yields

dE

dt
= −2νV, (8.9)

where
E =

∫∫

1
2∇ψ ·∇ψ dxdy (8.10)

is the kinetic energy and
V =

∫∫

1
2ζ

2dxdy (8.11)

is the enstrophy. Since ν > 0 and V > 0, the diffusion effect always damps the kinetic energy.
To obtain the enstrophy equation, multiply (8.6) by ζ and integrate over the domain. This yields

dV

dt
= −2νP, (8.12)

where
P =

∫∫

1
2∇ζ ·∇ζ dxdy (8.13)

is the palinstrophy. Since ν > 0 and P > 0, the diffusion effect always damps the enstrophy.
In the inviscid case (ν = 0), both the kinetic energy E and the enstrophy V are invariant in time. Then, the

ratio (E/V )1/2, a measure of the mean length scale of the flow, is also invariant, or equivalently, (V/E)1/2, a mean
wavenumber of the flow, is also invariant. When ν ̸= 0, but small in some sense, the situation is very different. To
understand this, consider a sequence of model runs (i.e., numerical solutions of (8.6)), all starting with the same initial
condition, but with smaller and smaller values of ν. Since the upper bound on V is its initial value, the right hand
side of (8.9) goes to zero as ν → 0, so that E becomes more and more nearly conserved. The behavior of the right
hand side of (8.12) is different. As ν becomes smaller, the ζ contours can become closer together before diffusion is
effective. When the ζ contours are close together, ∇ζ tends to be large, and by (8.13) the palinstrophy is large. Thus,
as ν → 0, the time behavior of the right hand side of (8.12) may not change much, and therefore the time behavior
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of the enstrophy V may not change much. In this way the enstrophy V may be damped while the kinetic energy E is
nearly conserved. This is the phenomenon of selective decay, i.e., enstrophy is selectively decayed over kinetic energy.
Inspection of Fig. 8.2 reveals that the experiment shown in Fig. 8.1 exhibits strong selective decay.

Now let’s prove that, in two-dimensional turbulence, energy and enstrophy move in opposite directions in wavenum-
ber space. Specifically, energy moves to lower wavenumber and enstrophy moves to higher wavenumber. Let k denote
the total wavenumber and E(k) the distribution of energy in wavenumber space. Assuming ν = 0 and considering an
initial condition in which E(k) is peaked at k = k1, we can say that, if this energy spreads in wavenumber space, then

d

dt

∫

(k − k1)
2 E(k)dk > 0. (8.14)

Because energy and enstrophy are conserved, we have d/dt
∫

E(k)dk = 0 and d/dt
∫

k2E(k)dk = 0. Then, expand-
ing (8.14), and using these last two results, we obtain

d

dt

[
∫

k2E(k)dk − 2k1

∫

kE(k)dk + k2
1

∫

E(k)dk

]

= −2k1
d

dt

∫

kE(k)dk > 0 (8.15)

Combining (8.15) with energy conservation, we obtain

d

dt

[

∫

kE(k)dk
∫

E(k)dk

]

< 0, (8.16)

which states that the wavenumber characterizing the energy-containing scales of motion decreases with time, i.e.,
energy moves toward large scales.

The argument that enstrophy moves to higher wavenumber proceeds in a similar fashion. If energy spreads, then

d

dt

∫

(

k2 − k2
1

)2
E(k)dk > 0 (8.17)

Again, because energy and enstrophy are conserved

d

dt

[
∫

k4E(k)dk − 2k2
1

∫

k2E(k)dk + k4
1

∫

E(k)dk

]

=
d

dt

∫

k4E(k)dk > 0. (8.18)

Thus, defining Z(k) = k2E(k), and combining (8.18) with enstrophy conservation, we obtain

d

dt

[

∫

k2Z(k)dk
∫

Z(k)dk

]

> 0, (8.19)

which states that the (squared) wavenumber characterizing the enstrophy-containing scales of motion increases with
time, i.e., enstrophy moves toward small scales.

Note that the above arguments contain two ingredients: conservation and irreversibility. Salmon (Lectures on
Geophysical Fluid Dynamics) has made the following observation. The theory of geostrophic turbulence relies almost
solely on two components: a conservation principle that energy and potential vorticity are (nearly) conserved and an
irreversibility principle in the form of an appealing assumption that breaks the time-reversal symmetry of the exact
(inviscid) dynamics. This irreversibility assumption takes a great many superficially dissimilar forms, fostering the
misleading impression of a great many competing explanations for the same phenomena. However, broad-minded
analysis inevitably reveals that these competing explanations are virtually equivalent.

These concepts lead to the following idealized picture of forced two-dimensional turbulence on a β-plane (see
Fig. 8.3). Energy and enstrophy are input at a certain wavenumber. Energy cascades to lower wavenumbers (larger
scales) while enstrophy cascades to higher wavenumbers (smaller scales). The energy cascade to larger scales meets
a barrier at the Rhines scale, the scale at which the earth’s sphericity becomes important. At this scale Rossby waves
are excited. The enstrophy cascade to smaller scales meets a barrier at dissipation scales. A more detailed discussion
of the Rhines scale is given in the next section.
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Figure 8.3: Idealized energy spectrum and transfers in two-dimensional turbulence with the β effect. ϵ is the rate of
energy input, which equals the transfer rate and dissipation rate. η is the rate of enstrophy input, which equals the
transfer rate and dissipation rate. From Vallis and Maltrud 1993.

8.3 Waves and turbulence on the sphere
Equation (8.5) contains nonlinear advection of relative vorticity and a linear term associated with Rossby-Haurwitz

waves. Since the Rossby-Haurwitz wave solution of the linearized version of (8.5) is Pm
n (µ)ei(mλ−ωt) (where m is

the zonal wavenumber, n the total wavenumber, ω the wave frequency, and Pm
n (µ) the associated Legendre function

of µ = sinφ), the Rossby-Haurwitz wave frequency is given by

2Ωm

n(n + 1)
. (8.20)

The turbulent frequency is given by
[n(n + 1)]

1

2

a
Vrms, (8.21)

where Vrms is the root-mean-square velocity. The dynamics is wavelike if

2Ωm

n(n + 1)
>

[n(n + 1)]
1

2

a
Vrms, (8.22)

while it is dominated by turbulence if
2Ωm

n(n + 1)
<

[n(n + 1)]
1

2

a
Vrms. (8.23)
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Figure 8.4: Anisotropic Rhines curves in the wavenumber plane of spherical harmonics Y n
n (λ, µ) = Pm

n (µ)eimλ,
where m is the zonal wavenumber and n is the total wavenumber. The curves are based on (8.25), with the values of
Vrms labeled in m s−1 on the right. From Huang and Robinson 1998.

The anisotropic Rhines curve, or Rhines barrier, is defined by

2Ωm

n(n + 1)
=

[n(n + 1)]
1

2

a
Vrms, (8.24)

which, after some rearrangement, can be written as

2Ωam

[n(n + 1)]
3

2

= Vrms. (8.25)

For a given Vrms, (8.25) defines a curve in the spherical harmonic wavenumber plane (m,n). Seven such curves, for
different values of Vrms, are displayed in Fig. 8.4. For a given Vrms, the region below the appropriate Rhines curve
satisfies (8.22) and is hence wavelike, while the region above the curve satisfies (8.23) and is hence dominated by
turbulence.

Now consider a set of ten experiments like (8.1), but on the sphere instead of the plane. The initial conditions are
all stirred, chaotic ones, with the initial energy centered at n = 40 and confined in the range 34 < n < 46. Figure
8.5 shows the mean energy spectrum (spherical harmonic spectral spacem,n), at day 80, for these ten experiments of
decaying turbulence. The isolines of energy are normalized to unity, with values greater than 0.1 lightly shaded, and
values greater than 0.2 heavily shaded. The energy cascades to lower total wavenumber (i.e., lower n), but is directed
to low values of zonal wavenumber m by the Rhines barrier. Since the m = 0 spherical harmonics are the zonal
harmonics, zonal jets result from the energy cascade, as shown in Fig. 8.6. These alternating easterly and westerly jets
are similar to observed patterns on Jupiter and Saturn.
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Figure 8.5: Mean energy spectrum (spherical harmonic spectral spacem,n), at day 80, for ten experiments of decaying
turbulence. The isolines of energy are normalized to unity, with values greater than 0.1 lightly shaded, and values
greater than 0.2 heavily shaded. From Huang and Robinson 1998.

Figure 8.6: Time-mean, zonal mean zonal winds for some two-dimensional turbulence experiments on the sphere.
From Huang and Robinson 1998.
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Required Reading

• Salmon, sections 4.8–4.10.

A Quote

Concerning turbulence, Horace Lamb is quoted in an address to the British Association for the Advance-
ment of Science as follows:
I am an old man now, and when I die and go to Heaven there are two matters on which I hope for
enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. About
the former I am rather optimistic.

Problems

1. Equation (8.9) is the kinetic energy principle for the nondivergent barotropic model on the plane, derived from
the nondivergent barotropic vorticity equation (8.6). Derive the kinetic energy principle for the nondivergent
barotropic model on the sphere, beginning with (8.5).
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9 Vertical Normal Modes of a Continuously Stratified Fluid
9.1 Governing equations and boundary conditions

Consider the motions of a compressible, inviscid, rotating atmosphere in hydrostatic balance. Using ln(p0/p) as
the vertical coordinate (see Chapter 6, section 3, with the star on z∗ dropped for convenience) the linearized horizontal
momentum, hydrostatic, continuity and thermodynamic energy equations are

∂u

∂t
− 2Ωv sin φ +

∂Φ

a cos φ∂λ
= 0, (9.1)

∂v

∂t
+ 2Ωu sin φ +

∂Φ

a∂φ
= 0, (9.2)

∂Φ

∂z
= RT, (9.3)

∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ
+ ez ∂(e−zw)

∂z
= 0, (9.4)

∂T

∂t
+ Γw =

Q

cp
, (9.5)

where the dependent variables u, v, w,Φ, T represent small-amplitude perturbations about a motionless basic state
Φ̄(z), T̄ (z) with static stability Γ(z) = κT̄ (z) + dT̄ (z)/dz. The heat source Q(λ,φ, z, t) represents the effects of
radiation and latent heat release on the large-scale flow; we assume this heat source is specified.

The atmosphere is taken to be vertically bounded, with the vertical ln p-velocity required to vanish at the upper
boundary, the pressure surface z = zT . At the lower boundary, approximated by the pressure surface z = 0, we
require that the actual vertical velocity vanish. After linearization these boundary conditions are

w = 0 at z = zT , (9.6)
∂Φ

∂t
+ RT̄w = 0 at z = 0. (9.7)

It is convenient to eliminate T and w between (9.3)–(9.5) to obtain

−ez ∂

∂z

[

e−z

RΓ

∂

∂z

(

∂(Φ − Φ̃)

∂t

)]

+
∂u

a cos φ∂λ
+

∂(v cos φ)

a cos φ∂φ
= 0. (9.8)

where the “forced geopotential” Φ̃(λ,φ, z, t), defined by

∂

∂z

(

∂Φ̃

∂t

)

= κQ, (9.9)

is the perturbation geopotential which would result from the heating Q(λ,φ, z, t) if the motion were constrained to be
nondivergent. Note that, for a given heating function Q(λ,φ, z, t), the forced geopotential Φ̃(λ,φ, z, t) is not com-
pletely determined from (9.9) alone, since there are two constants of integration implicit in this definition. Similarly,
eliminating w in the boundary conditions (9.6) and (9.7) using (9.3) and (9.5), we obtain

∂

∂z

(

∂(Φ − Φ̃)

∂t

)

= 0 at z = zT (9.10)

∂

∂z

(

∂(Φ − Φ̃)

∂t

)

−
Γ

T̄

(

∂(Φ − Φ̃)

∂t

)

= 0 at z = 0, (9.11)

where we have set ∂Φ̃/∂t = 0 at z = 0, thus fixing one of the constants of integration implicit in (9.9).
We have now reduced our problem to the three equations (9.1), (9.2) and (9.8) in the three variables u(λ,φ, z, t),

v(λ,φ, z, t) and Φ(λ,φ, z, t), with the upper and lower boundary conditions (9.10) and (9.11).
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9.2 Vertical transform
The only z derivatives in the governing equations (9.1), (9.2) and (9.8) appear in the first term of (9.8). We shall

therefore design a vertical transform which eliminates these vertical derivatives. Let us define Φn(λ,φ, t), the vertical
integral transform of Φ(λ,φ, z, t), by

Φn(λ,φ, t) =

∫ zT

0

Φ(λ,φ, z, t)Ψn(z)e−z/2dz, (9.12)

where e−z/2 is the weight and Ψn(z) the kernel of the transform. At this point in our argument the kernel is unspec-
ified. Definitions similar to (9.12) hold for un(λ,φ, t) and vn(λ,φ, t), the vertical integral transforms of u(λ,φ, z, t)
and v(λ,φ, z, t).

To vertically transform equation (9.8), we first multiply it byΨn(z)e−z/2 and then integrate the resulting equation
from z = 0 to z = zT . Let’s concentrate on what happens to the first term in (9.8) in this process. If we integrate by
parts twice, this first term becomes

∫ zT

0

Ψnez ∂

∂z

[

e−z

RΓ

∂

∂z

(

∂(Φ − Φ̃)

∂t

)]

e−z/2dz

=

∫ zT

0

∂(Φ − Φ̃)

∂t
ez/2

∂

∂z

[

e−z

RΓ

∂(ez/2Ψ)

∂z

]

e−z/2dz

−

[

e−z

RΓ

{

∂(Φ − Φ̃)

∂t

d
(

ez/2Ψn

)

dz
− ez/2Ψn

∂

∂z

(

∂(Φ − Φ̃)

∂t

)}]zT

0

.

(9.13)

Suppose we require the so-far-undetermined kernel Ψn(z) to satisfy the upper and lower boundary conditions (9.16)
and (9.17). Then, also using (9.10) and (9.11), we can easily show that the boundary term in (9.13) vanishes. If we
also require that the kernel Ψn(z) satisfy the ordinary differential equation (9.15), then (9.13) reduces to

∫ zT

0

Ψnez ∂

∂z

[

e−z

RΓ

∂

∂z

(

∂(Φ − Φ̃)

∂t

)]

e−z/2dz = −
1

c2
n

∂(Φn − Φ̃n)

∂t
, (9.14)

which allows (9.8) to be transformed to (9.22).
To summarize, the set of functions Ψn(z) are solutions of the Sturm-Liouville eigenproblem

ez/2
d

dz

[

e−z

RΓ

d
(

ez/2Ψn

)

dz

]

+
1

c2
n

Ψn = 0, (9.15)

d
(

ez/2Ψn

)

dz
= 0 at z = zT (9.16)

d
(

ez/2Ψn

)

dz
−

Γ

T̄
ez/2Ψn = 0 at z = 0. (9.17)

The inverse transform may be obtained by considering the properties of the solutions of (9.15)–(9.17). It can be
shown (e.g., Morse and Feshbach 1953) that if Γ(z) is strictly positive and continuously differentiable for 0 ≤ z ≤ zT

then (9.15)–(9.17) have a countably infinite set of solutions {cn,Ψn(z)}∞n=0 with the following properties:

(i) The eigenvalues cn are real and may be ordered such that
c0 > c1 > . . . > cn > . . . > 0 with cn → 0 as n → ∞.

(ii) The eigenfunctions Ψn(z) are orthogonal and may be chosen
to be real.

(iii) The eigenfunctions Ψn(z) form a complete set.
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We normalize the Ψn(z) so that in view of property (ii) we have
∫ zT

0

Ψm(z)Ψn(z)dz =

{

1 m = n
0 m ̸= n

}

. (9.18)

Property (iii) allows us to expand any function, for example Φ(λ,φ, z, t), as

Φ(λ,φ, z, t) =
∞
∑

n=0

Φn(λ,φ, t)Ψn(z)ez/2, (9.19)

and (9.18) implies that the coefficients in this expansion are given by (9.12). Thus, we see that (9.12) and (9.19) form
the desired transform pair.

To summarize, applying the transform (9.8) to the governing equations (9.1), (9.2) and (9.8) results in

∂un

∂t
− 2Ωvn sinφ +

∂Φn

a cos φ∂λ
= 0, (9.20)

∂vn

∂t
+ 2Ωun sin φ +

∂Φn

a∂φ
= 0, (9.21)

∂Φn

∂t
+ c2

n

(

∂un

a cos φ∂λ
+

∂(vn cos φ)

a cos φ∂φ

)

=
∂Φ̃n

∂t
, (9.22)

which is formally equivalent to the linearized divergent barotropic model (i.e., the linearized shallow water equations).
The eigenvalue cn which appears in (9.22) in place of the pure gravity wave phase speed in the divergent barotropic
model thus corresponds to the phase speed of a pure gravity wave of a single vertical mode n having vertical structure
Ψn(z)ez/2 in the stratified model. Thus by use of the vertical transform pair (9.12) and (9.19), the solution of the
stratified problem has been reduced to a superposition of solutions of the barotropic problems corresponding to the
various vertical modes. For this reason we refer to (9.12) and (9.19) as a vertical normal mode transform pair. Solutions
of the eigenvalue problem (9.15)–(9.17) for the case of constant static stability are discussed in the next section.

9.3 Solution of the Sturm-Liouville eigenproblem in the constant static stability case
When the static stability Γ is constant, the vertical structure problem (9.15)–(9.17) simplifies to

d2Ψn

dz2
+

(

RΓ

c2
n

−
1

4

)

Ψn = 0, (9.23)

dΨn

dz
+

1

2
Ψn = 0 at z = zT , (9.24)

dΨn

dz
+

(

1

2
−

Γ

T̄0

)

Ψn = 0 at z = 0. (9.25)

Note that the character of a solution of (9.23) is evanescent in z ifRΓ/c2
n < 1/4 and is oscillatory in z ifRΓ/c2

n > 1/4.
Since we don’t yet know the eigenvalues cn, we must investigate both possibilities.

Thus, let us consider case 1: µ2
n > 0, where

µn =

(

1

4
−

RΓ

c2
n

)
1

2

. (9.26)

In this case the vertical structure equation (9.23) has the solution

Ψn(z) = A cosh(µnz) + B sinh(µnz). (9.27)

When this solution is substituted into the boundary conditions (9.24) and (9.25), we obtain
[

1

2
+ µn tanh(µnzT )

]

A +

[

1

2
tanh(µnzT ) + µn

]

B = 0, (9.28)
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[

1

2
−

Γ

T̄0

]

A + µnB = 0, (9.29)

which is a homogeneous linear algebraic system in A and B. Requiring the determinant of the coefficients of A and
B to vanish, we obtain

(

RT̄0

c2
n

−
1

2

)

tanh(µnzT ) = µn. (9.30)

It can be shown that, if zT > 4Γ/(T̄0 − 2Γ), then (9.30) has precisely one root c0 with c2
0 > 4RΓ, and that if

zT ≤ 4Γ/(T̄0−2Γ), then (9.30) has no roots with µ2
n > 0. Thus, (9.30), along with (9.26), defines one phase speed c0

in the case where zT > 4Γ/(T̄0 − 2Γ). An approximate value for c0, obtained by assuming c2
0 >> 4RΓ and therefore

setting µ0 = 1/2 in (9.30), is given by
c0 ≈

[(

1 − e−zT

)

RT̄0

]
1

2 (9.31)

For zT = 2.313, T̄0 = 302.53K and Γ = 23.79K, the exact eigenvalue c0 determined numerically from (9.30) and the
approximate eigenvalue determined from (9.31) are given in the row labeled n = 0 in Table 9.1. When (9.29) is used
to express B in terms of A, the corresponding eigenfunction can be written as

Ψ0(z) = A

[

cosh(µ0z) −
γ

µ0

sinh(µ0z)

]

, (9.32)

where γ = 1/2 − Γ/T̄0. To satisfy the normalization condition given by (9.18), we choose A as

A2 =
2µ3

0c
2
0

RΓ
[

(µ2
0

+ γ2) sinh(µ0zT ) cosh(µ0zT ) − 2µ0γ sinh2(µ0zT ) + (µ2
0
− γ2)µ0zT

] . (9.33)

The external mode basis function Ψ0(z)ez/2 is plotted in Fig. 9.1.

n Exact Approx
0 287.00 279.70
1 56.28 60.84
2 29.79 30.42
3 20.09 20.28
4 15.13 15.21
5 12.13 12.17
6 10.12 10.14
7 8.68 8.69
8 7.59 7.60
9 6.75 6.76
10 6.08 6.08

Table 9.1:

Now consider case 2: ν2
n > 0 where

νn =

(

RΓ

c2
n

−
1

4

)
1

2

. (9.34)

In this case the vertical structure equation (9.23) has the solution

Ψn(z) = C cos(νnz) + D sin(νnz). (9.35)

When this solution is substituted into the boundary conditions (9.24) and (9.25), we obtain
[

1

2
− νn tan(νnzT )

]

C +

[

1

2
tan(νnzT ) + νn

]

D = 0, (9.36)
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Figure 9.1: Vertical structure functions Ψn(z)ez/2 for the constant static stability atmosphere for the
vertical modes n = 0, 1, 2, 3, 4. These five eigenfunctions have the corresponding eigenvalues
cn = 287.00, 56.28, 29.79, 20.09, 15.13 ms−1, or in terms of equivalent depth hn = c2

n/g =
8405, 323.2, 90.6, 41.2, 23.4 m.

[

1

2
−

Γ

T̄0

]

C + νnD = 0, (9.37)

which is a homogeneous linear algebraic system in C and D. Requiring the determinant of the coefficients of C and
D to vanish, we obtain

(

RT̄0

c2
n

−
1

2

)

tan(νnzT ) = νn. (9.38)

It can be shown that (9.38) has solutions cn (n = 1, 2, . . .) with

4RΓ

[2(n + 1)π/zT ]2 + 1
< c2

n <
4RΓ

[2nπ/zT ]2 + 1
,

and that if zT ≤ 4Γ/(T̄0 − 2Γ), then (9.38) also has one solution c0 with

4RΓ

[2π/zT ]2 + 1
< c2

0 < 4RΓ.

Thus (9.38), along with (9.34), defines a countably set of phase speeds cn. As cn becomes smaller, a useful approxi-
mation of (9.38) is tan(νnzT ) ≈ 0, which has solutions νnzT = nπ. When this is used in (9.34), we obtain

cn ≈
(RΓ)

1

2 zT

nπ
. (9.39)

For zT = 2.313, T̄0 = 302.53K and Γ = 23.79K, the exact eigenvalues determined numerically from (9.38) and
the approximate eigenvalues determined from (9.39) are given in the rows labeled n = 1, 2, . . . , 10 in Table 9.1. The
asymptotic behavior cn ∼ 1/n as n becomes large is obvious from the table. When (9.37) is used to express D in
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terms of C, the corresponding eigenfunctions can be written as

Ψn(z) = C

[

cos(νnz) −
γ

νn
sin(νnz)

]

. (9.40)

To satisfy the normalization condition given by (9.18), we choose C as

C2 =
2ν3

nc2
n

RΓ
[

(ν2
n − γ2) sin(µ0zT ) cos(µ0zT ) − 2νnγ sin2(µ0zT ) + (ν2

n + γ2)µ0zT

] . (9.41)

The internal mode basis functions Ψn(z)ez/2 are plotted for n = 1, 2, 3, 4 in Fig. 9.1.

9.4 Summary
We have now established a procedure for solving the system (9.1)–(9.5) by converting it into an infinite set of

shallow water systems. The idea is as follows. Starting from (9.1)–(9.5), eliminate T and w to obtain a system of three
equations in three unknowns, the equations being (9.1), (9.2), and (9.8), the unknowns being u(λ,φ, z, t), v(λ,φ, z, t),
Φ(λ,φ, z, t). Defining the vertical transform of these variables as

⎛

⎝

un(λ,φ, t)
vn(λ,φ, t)
Φn(λ,φ, t)

⎞

⎠ =

∫ zT

0

⎛

⎝

u(λ,φ, z, t)
v(λ,φ, z, t)
Φ(λ,φ, z, t)

⎞

⎠Ψn(z)e−z/2dz, (9.42)

derive the shallow water equation set (9.20)–(9.22) for each vertical mode n. Once we have solved each shallow water
set, we can perform the inverse vertical transform

⎛

⎝

u(λ,φ, z, t)
v(λ,φ, z, t)
Φ(λ,φ, z, t)

⎞

⎠ =
∞
∑

n=0

⎛

⎝

un(λ,φ, t)
vn(λ,φ, t)
Φn(λ,φ, t)

⎞

⎠Ψn(z)ez/2, (9.43)

to recover the original unknowns u(λ,φ, z, t), v(λ,φ, z, t), Φ(λ,φ, z, t). The set of constants c2
n appearing in the

shallow water equations and the set of vertical structure functions Ψn(z) (n = 0, 1, 2, · · · ) are determined by solving
the eigenvalue-eigenfunction problem (9.15)–(9.17). The eigenvalues c2

n and the eigenfunctions Ψn(z) depend on our
specification of the basic state static stability Γ(z), and in section 9.3 we have solved this eigenvalue-eigenfunction
problem for the simplest case, i.e., the case when Γ is a constant. When Γ is not a constant, the eigenvalues will differ
from those given in Table 9.1 and the eigenfunctions will differ from those plotted in Fig. 9.1. However, for reasonable
choices of Γ(z), the results will be very similar.

In the following chapters we shall concentrate on solving the shallow water equations, without reference to the
vertical structure in which they are embedded. Although we would like to solve the spherical shallow water equations
(9.20)–(9.22), this proves somewhat difficult, so we shall concentrate mostly on the f -plane and β-plane approxima-
tions of (9.20)–(9.22).

Problems

1. Starting from the complete thermodynamic equation, show that (9.5) is the form resulting from linearization
about a resting basic state.

2. Starting from (9.3)–(9.5) eliminate T and w to obtain (9.8).

3. Derive the boundary conditions (9.10) and (9.11) from (9.6) and (9.7).

4. For Γ =constant, prove that (9.15) reduces to (9.23).
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10 The Shallow Water Equations on an f -plane
10.1 Linearization and nondimensionalization

In this chapter we shall study the process by which an initially unbalanced flow adjusts to geostrophic balance. The
initially unbalanced state could be a flow without a corresponding pressure gradient, or a pressure gradient without
a corresponding flow. In either case there will be a transient adjustment process which leads to a final geostrophic
balance. We are ultimately interested in how this process occurs in the stratified atmosphere on the spherical earth.
Unfortunately, this is mathematically complicated, and it is best to start with f -plane, shallow water arguments. With
the f -plane approximation, the shallow water equations (7.4)–(7.6) become

Du

Dt
− fv + g

∂h

∂x
= 0, (10.1)

Dv

Dt
+ fu + g

∂h

∂y
= 0, (10.2)

Dh

Dt
+ h

(

∂u

∂x
+

∂v

∂y

)

= Q(x, y)α2te−αt, (10.3)

where u and v are velocity components in the x- and y-directions, respectively, f is the constant Coriolis parameter,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(10.4)

is the material derivative, and Q(x, y)α2te−αt is the mass source or sink. We have assumed that the mass source or
sink can be factored into space-dependent and time-dependent parts, with the time-dependent part given by α2te−αt.
Small α corresponds to slow forcing and large α to rapid forcing, but the total forcing is independent of α, since
∫ ∞
0 α2te−αtdt = 1.
Although the f -plane equations (10.1)–(10.3) are simpler than the spherical equations (7.4)–(7.6), they are still

very complicated because of nonlinearity. Thus, we shall consider small amplitude motions about a basic state of rest.
The linearized shallow water equations governing such motions are

∂u

∂t
− fv + g

∂h

∂x
= 0, (10.5)

∂v

∂t
+ fu + g

∂h

∂y
= 0, (10.6)

∂h

∂t
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= Q(x, y)α2te−αt, (10.7)

where h̄ is the constant mean depth of the layer and h should now be interpreted as the deviation of the actual depth
from the mean depth.

Before solving (10.5)–(10.7) it is convenient to put the problem in nondimensional form by defining c = (gh̄)1/2

and choosing 1/f , c/f , h̄ and c as units of time, horizontal distance, vertical distance, and speed, respectively. The
resulting equations may be written as

∂u

∂t
− v +

∂h

∂x
= 0, (10.8)

∂v

∂t
+ u +

∂h

∂y
= 0, (10.9)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= Q(x, y)α2te−αt, (10.10)

where all quantities are now nondimensional.
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At large times the right hand side of (10.10) is very small and, if the solution has settled into a steady state (i.e., if
∂u/∂t = 0, ∂v/∂t = 0, and ∂h/∂t = 0), we see that u = −∂h/∂y, v = ∂h/∂x and ∂u/∂x + ∂v/∂y = 0, i.e., the
flow is geostrophic and horizontally nondivergent. Our goal in this chapter is to show how the atmosphere naturally
evolves into such steady geostrophic states, no matter what the initial condition or the forcing.

10.2 Geostrophic adjustment: One-dimensional case
Let us first consider the y-independent case, so that (10.8)–(10.10) reduce to

∂u

∂t
− v +

∂h

∂x
= 0, (10.11)

∂v

∂t
+ u = 0, (10.12)

∂h

∂t
+

∂u

∂x
= Q(x)α2te−αt. (10.13)

The linearized potential vorticity principle derived from (10.12) and (10.13) is simply

∂

∂t

(

∂v

∂x
− h

)

= −Q(x)α2te−αt, (10.14)

so that the potential vorticity ∂v/∂x − h locally increases if there is a mass sink (Q < 0), but is locally conserved
during the geostrophic adjustment process if Q = 0.

In the y-independent case, u does not contribute to the vorticity and v does not contribute to the divergence. Thus,
it is appropriate to refer to u as the divergent part of the flow and v as the rotational part of the flow. Equations
(10.11)–(10.13) constitute a set of constant coefficient, linear partial differential equations in the dependent variables
u(x, t), v(x, t), h(x, t). We shall treat the x-domain as infinite. Note that the solution depends on specification of the
initial conditions u(x, 0), v(x, 0), h(x, 0) and the mass source/sink Q(x). If v(x, 0) and h(x, 0) are specified in such a
way that v(x, 0) ̸= ∂h(x, 0)/∂x, the initial fields are out of geostrophic balance, and a transient adjustment will occur.

We can construct the solution of (10.11)–(10.13) by using Fourier transform methods. First, we introduce the
Fourier transform pair

u(x, t) = (2π)−1/2

∞
∫

−∞

û(k, t)eikxdk, (10.15a)

û(k, t) = (2π)−1/2

∞
∫

−∞

u(x, t)e−ikxdx, (10.15b)

where k is the horizontal wavenumber. Similar transform pairs exist for v(x, t), v̂(k, t), for h(x, t), ĥ(k, t), and for
Q(x), Q̂(k) . We refer to u(x, t) as the physical space representation of the divergent flow and û(k, t) as the spectral
space representation of the divergent flow. Transforming (10.11)–(10.13) via (10.15), assuming that the solution is
localized in space, we obtain

dû

dt
− v̂ + ikĥ = 0, (10.16)

dv̂

dt
+ û = 0, (10.17)

dĥ

dt
+ ikû = Q̂α2te−αt, (10.18)

with k now regarded as a parameter. Equations (10.16)–(10.18) form a coupled set of three ordinary differential
equations in the unknowns û(k, t), v̂(k, t) and ĥ(k, t). We can form three decoupled equations by combining them in
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the following three ways: (1+k2)1/2 ·(10.16)+i·(10.17)+k ·(10.18),−(1+k2)1/2 ·(10.16)+i·(10.17)+k ·(10.18),
and ik · (10.17) − (10.18). These operations result in

d

dt

[

(1 + k2)1/2û + iv̂ + kĥ
]

+ i(1 + k2)1/2
[

(1 + k2)1/2û + iv̂ + kĥ
]

= kQ̂α2te−αt, (10.19)

d

dt

[

−(1 + k2)1/2û + iv̂ + kĥ
]

− i(1 + k2)1/2
[

−(1 + k2)1/2û + iv̂ + kĥ
]

= kQ̂α2te−αt, (10.20)

d

dt

[

ikv̂ − ĥ
]

= −Q̂α2te−αt. (10.21)

Note that (10.21) is the transformed version of the potential vorticity equation (10.14). Equations (10.19)–(10.21)
are decoupled if we think of (1 + k2)1/2û + iv̂ + kĥ, −(1 + k2)1/2û + iv̂ + kĥ, and ikv̂ − ĥ as the unknowns.
Equation (10.21) can easily be solved by integration to yield (10.24) below. Equations (10.19) and (10.20) can also
easily be solved by integration if we first multiply them by ei(1+k2)1/2t and e−i(1+k2)1/2t respectively; this allows the
two terms on the left hand sides of (10.19) and (10.20) to be collapsed into single terms, after which integration can
be performed. In this way we obtain the solutions

(1 + k2)1/2û(k, t) + iv̂(k, t) + kĥ(k, t) =
[

(1 + k2)1/2û(k, 0) + iv̂(k, 0) + kĥ(k, 0)
]

e−i(1+k2)1/2t

+
kα2Q̂

[

α − i(1 + k2)1/2
]2

{

e−i(1+k2)1/2t −
[

1 +
(

α − i(1 + k2)1/2
)

t
]

e−αt
}

, (10.22)

− (1 + k2)1/2û(k, t) + iv̂(k, t) + kĥ(k, t) =
[

−(1 + k2)1/2û(k, 0) + iv̂(k, 0) + kĥ(k, 0)
]

ei(1+k2)1/2t

+
kα2Q̂

[

α + i(1 + k2)1/2
]2

{

ei(1+k2)1/2t −
[

1 +
(

α + i(1 + k2)1/2
)

t
]

e−αt
}

, (10.23)

ikv̂(k, t) − ĥ(k, t) = ikv̂(k, 0) − ĥ(k, 0) + Q̂
[

(1 + αt)e−αt − 1
]

. (10.24)

We shall now consider separately the evolution of a flow in the unforced, initial value case and the evoluion of a
forced flow developed from a state of rest. First consider the unforced case, which allows neglect of the Q̂ terms in
(10.22)–(10.24). When the initial condition is in v and h only (i.e., u(x, 0) = 0), the solutions (10.22)–(10.24) can be
combined to obtain

û(k, t) =
[

v̂(k, 0) − ikĥ(k, 0)
] sin[(1 + k2)1/2t]

(1 + k2)1/2
, (10.25)

v̂(k, t) =
[

v̂(k, 0) − ikĥ(k, 0)
] cos[(1 + k2)1/2t]

1 + k2
−

[

ikv̂(k, 0) − ĥ(k, 0)
] ik

1 + k2
, (10.26)

ĥ(k, t) =
[

v̂(k, 0) − ikĥ(k, 0)
] ik cos[(1 + k2)1/2t]

1 + k2
−

[

ikv̂(k, 0) − ĥ(k, 0)
] 1

1 + k2
. (10.27)

Formulas (10.25)–(10.27) constitute the spectral space solutions of the unforced geostrophic adjustment problem. To
obtain the physical space solutions we simply use (10.25)–(10.27) in the Fourier transform relations (e.g., (10.15a)) to
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obtain

u(x, t) = (2π)−1/2

∫ ∞

−∞

[

v̂(k, 0) − ikĥ(k, 0)
] sin[(1 + k2)1/2t]

(1 + k2)1/2
eikxdk, (10.28)

v(x, t) = (2π)−1/2

∫ ∞

−∞

[

v̂(k, 0) − ikĥ(k, 0)
] cos[(1 + k2)1/2t]

1 + k2
eikxdk

−(2π)−1/2

∫ ∞

−∞

[

ikv̂(k, 0) − ĥ(k, 0)
] ik

1 + k2
eikxdk, (10.29)

h(x, t) = (2π)−1/2

∫ ∞

−∞

[

v̂(k, 0) − ikĥ(k, 0)
] ik cos[(1 + k2)1/2t]

1 + k2
eikxdk

−(2π)−1/2

∫ ∞

−∞

[

ikv̂(k, 0) − ĥ(k, 0)
] 1

1 + k2
eikxdk. (10.30)

Note that the v̂(k, 0) and ĥ(k, 0) functions appearing in (10.28)–(10.30) are given in terms of the initial v(x, 0) and
h(x, 0) by

v̂(k, 0) = (2π)−1/2

∫ ∞

−∞
v(x, 0)e−ikxdx, (10.31)

ĥ(k, 0) = (2π)−1/2

∫ ∞

−∞
h(x, 0)e−ikxdx. (10.32)

Equations (10.28)–(10.30) constitute the analytic solution of the unforced initial value problem (10.11)–(10.13).
The construction of plots of the physical space solutions can be summarized as follows: (1) From the specified initial
conditions v(x, 0) and h(x, 0), calculate v̂(k, 0) and ĥ(k, 0) from (10.31) and (10.32); (2) Use these results in (10.28)–
(10.30) to obtain u(x, t), v(x, t) and h(x, t). Note that this procedure allows us to compute the solution at time t
without computing the solution at all intermediate times, as would be required by a time-stepping procedure applied
to the original partial differential equations (10.11)–(10.13). It is also interesting to note that, while the solution
for u(x, t) consists of a time dependent part only, the solutions for v(x, t) and h(x, t) consist of two parts—a time
dependent part (the gravity-inertia waves) and a time independent part (the final geostrophic flow). When we make
diagrams of the solutions for v(x, t) and h(x, t) we can plot these two parts separately. Such a partition into gravity-
inertia waves and geostrophic flow is not possible if we use a brute force time-stepping procedure applied to the
original partial differential equations (10.11)–(10.13).

Although the Fourier integrals in (10.31)–(10.32) can usually be done analytically (if v(x, 0) and h(x, 0) are not too
complicated functions of x), the Fourier integrals involved in (10.28)–(10.30) must usually be evaluated numerically
because the integrands are such complicated functions of k.

There are interesting alternative ways of expressing (10.28)–(10.30). For example, noting that

v̂(k, 0) − ikĥ(k, 0) = (2π)−1/2

∫ ∞

−∞
[v(x′, 0) − hx′(x′, 0)] e−ikx′

dx′,

we can rewrite (10.28) as

u(x, t) =

∫ ∞

−∞
[v(x′, 0) − hx′(x′, 0)]

[

1

2π

∫ ∞

−∞

sin[(1 + k2)1/2t]

(1 + k2)1/2
eik(x−x′)dk

]

dx′.

Since (see the Fourier transform tables of Erdelyi et al. 1954, page 26),

1

2π

∫ ∞

−∞

sin[(1 + k2)1/2t]

(1 + k2)1/2
eik(x−x′)dk =

{

1
2J0

(

[

t2 − (x − x′)2
]1/2

)

if x − t < x′ < x + t

0 otherwise
(10.33)

we can write the solution u(x, t) as

u(x, t) = 1
2

∫ x+t

x−t
[v(x′, 0) − hx′(x′, 0)] J0

(

[

t2 − (x − x′)2
]1/2

)

dx′, (10.34)
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Figure 10.1: Isolines of the right hand side of (10.33), with x−x′ on the abscissa and t on the ordinate. Below the two
diagonal lines |x − x′| = t the right hand side of (10.33) is zero. Across these diagonals there is a jump from zero to
0.5. Above the diagonals, isolines are drawn every 0.1 with negative values shaded. Note the damping at large times,
i.e., the divergent part of the wind decays with time so that the rotational part of the wind comes into geostrophic
balance.

Figure 10.2: The zero order Bessel function J0(t). The asymptotic form is J0(t) ∼ [2/(πt)]1/2 cos(t− 1
4π) as t → ∞,

so that J0(t) decays as t−1/2 and the interval between the nodes approaches π as t → ∞.

where J0 is the zero order Bessel function. Isolines of the right hand side of (10.33) in the (x− x′, t)-plane are shown
in Fig. 10.1.

If v(x, 0) − hx(x, 0) = δ(x), the Dirac delta function, (10.34) simplifies to

u(x, t) =

{

1
2J0

[

(t2 − x2)1/2
]

t > |x|,
0 t < |x|.

(10.35)

Figure 10.2 displays J0(t), which is the solution for u at x = 0. Figure 10.3 shows curved lines in the (x, t) plane
along which J0[(t2−x2)1/2] = 0 and straight lines along which J0[(t2−x2)1/2] = 1. We can understand the solution
both by examining the oscillation in time at a fixed x point and by examining the oscillation in space at a fixed t. The
oscillation of u(x, t) with time at x = 5 is shown in Fig. 10.4. Note that u remains zero until t = 5, then increases
instantaneously and begins a damped oscillation. The solution at t = 10 as a function of x is shown in Fig. 10.5. Some
important aspects of Fig. 10.5 are as follows: (1) The initial point disturbance causes oscillation in the domain |x| < t
and the domain expands in space as time increases. (2) For t >> |x|, the solution oscillates with an approximate
frequency f in dimensional terms, but the oscillation gradually damps. (3) Across the lines t = |x|, J0[(t2 − x2)1/2]
jumps and divergence is momentarily infinite, causing a sudden change in the free surface height.
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Figure 10.3: Nodal lines of the solution (10.35) in the (x, t)-plane.

Figure 10.4: The oscillation of u(x, t) in time at x = 5, according to (10.35).

Let us now return to the discussion of the general solutions (10.28)–(10.30). What we have just observed is the
tendency for the gravity-inertia wave part of the initial disturbance to disperse over a wide area. This is a robust
feature of the solutions (10.28)–(10.30), i.e., it is true for any initial condition, not just the particular one illustrated in
Fig. 10.2–10.4. The only term on the right hand side of (10.28), the first term on the right hand side of (10.29), and the
first term on the right hand side of (10.30) are all oscillatory in time in spectral space. In physical space they represent
propagating gravity-inertia waves. If one waits long enough for the gravity-inertia waves to disperse to infinity, only
the final balanced flow remains. Then (10.29) and (10.30) yield

v(x,∞) = −(2π)−1/2

∫ ∞

−∞

[

ikv̂(k, 0) − ĥ(k, 0)
] ik

1 + k2
eikxdk, (10.36)

h(x,∞) = −(2π)−1/2

∫ ∞

−∞

[

ikv̂(k, 0) − ĥ(k, 0)
] 1

1 + k2
eikxdk. (10.37)

Note that to have any final rotational wind or pressure disturbance, we must have some initial potential vorticity
disturbance (i.e., nonzero ikv̂(k, 0)−ĥ(k, 0)). Now define v̂g(k, 0) and ĥg(k, 0) by v̂g(k, 0) = ikĥ(k, 0) and v̂(k, 0) =

ikĥg(k, 0) respectively. Then, (10.36) and (10.37) can be written as

v(x,∞) = (2π)−1/2

∫ ∞

−∞

[(

k2

1 + k2

)

v̂(k, 0) +

(

1

1 + k2

)

v̂g(k, 0)

]

eikxdk, (10.38)

h(x,∞) = (2π)−1/2

∫ ∞

−∞

[(

k2

1 + k2

)

ĥg(k, 0) +

(

1

1 + k2

)

ĥ(k, 0)

]

eikxdk. (10.39)
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Figure 10.5: The oscillation of u(x, t) in space at t = 10, according to (10.35).

Equation (10.38) states that the final wind v(x,∞) is a spectral space weighted average of the initial wind v̂(k, 0)
[weight k2/(1 + k2)] and the initial geostrophic wind v̂g(k, 0) [weight 1/(1 + k2)]. Equation (10.39) states that the
final pressure field h(x,∞) is a spectral space weighted average of the initial geostrophic height ĥg(k, 0) [weight
k2/(1 + k2)] and the initial pressure field ĥ(k, 0) [weight 1/(1 + k2)]. The two important weighting functions are
shown in Fig. 10.6. We may interpret k2/(1+k2) as the spectral modification of an initial rotational wind disturbance
and note that low wavenumbers are eliminated. Likewise, 1/(1 + k2) is the spectral modification of an initial pressure
disturbance, with high wavenumbers being eliminated.

10.3 Case 1: An initial unbalanced wind disturbance
Now consider the case v(x, 0) = v0e−

1

2
(x/b)2 and h(x, 0) = 0, where the constants v0 and b denote the magnitude

and horizontal size of the initial wind disturbance. From (10.31) and (10.32) we obtain ĥ(k, 0) = 0 and

v̂(k, 0) =

(

2

π

)1/2

v0

∫ ∞

0
e−

1

2
(x/b)2 cos(kx)dx = v0be

− 1

2
k2b2 . (10.40)

Using these results in (10.28)–(10.30) we obtain

u(x, t) =

(

2

π

)1/2

v0b

∫ ∞

0

1

(1 + k2)1/2
e−

1

2
k2b2 sin[(1 + k2)1/2t] cos(kx)dk, (10.41)

v(x, t) =

(

2

π

)1/2

v0b

∫ ∞

0

(

1

1 + k2

)

e−
1

2
k2b2 cos[(1 + k2)1/2t] cos(kx)dk

+

(

2

π

)1/2

v0b

∫ ∞

0

(

k2

1 + k2

)

e−
1

2
k2b2 cos(kx)dk, (10.42)

h(x, t) = −
(

2

π

)1/2

v0b

∫ ∞

0

(

k

1 + k2

)

e−
1

2
k2b2 cos[(1 + k2)1/2t] sin(kx)dk

+

(

2

π

)1/2

v0b

∫ ∞

0

(

k

1 + k2

)

e−
1

2
k2b2 sin(kx)dk. (10.43)

From the inverse transform of (10.40) we have

v(x, 0) =

(

2

π

)1/2

v0b

∫ ∞

0
e−

1

2
k2b2 cos(kx)dk, (10.44)

while from (10.42) we deduce that

v(x,∞) =

(

2

π

)1/2

v0b

∫ ∞

0

(

k2

1 + k2

)

e−
1

2
k2b2 cos(kx)dk ≈

{

v(x, 0) if b << 1,
0 if b >> 1.

(10.45)
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Figure 10.6: Weighting functions 1/(1 + k2) and k2/(1 + k2).

Note that the only difference in the integrals of (10.44) and (10.45) is the weighting function k2/(1 + k2). Thus, by
comparing (10.44) and (10.45), we deduce that, if b << 1, the pressure adjusts to the wind, while if b >> 1, the wind
adjusts to the pressure.

10.4 Case 2: An initial unbalanced pressure disturbance
Now consider the case v(x, 0) = 0 and h(x, 0) = h0e−

1

2
(x/b)2 , where the constants h0 and b denote the magnitude

and horizontal size of the initial pressure disturbance. From (10.31) and (10.32) we obtain v̂(k, 0) = 0 and

ĥ(k, 0) =

(

2

π

)1/2

h0

∫ ∞

0
e−

1

2
(x/b)2 cos(kx)dx = h0be

− 1

2
k2b2 . (10.46)
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Using these results in (10.28)–(10.30) we obtain

u(x, t) =

(

2

π

)1/2

h0b

∫ ∞

0

k

(1 + k2)1/2
e−

1

2
k2b2 sin[(1 + k2)1/2t] sin(kx)dk, (10.47)

v(x, t) =

(

2

π

)1/2

h0b

∫ ∞

0

(

k

1 + k2

)

e−
1

2
k2b2 cos[(1 + k2)1/2t] sin(kx)dk

−
(

2

π

)1/2

h0b

∫ ∞

0

(

k

1 + k2

)

e−
1

2
k2b2 sin(kx)dk, (10.48)

h(x, t) =

(

2

π

)1/2

h0b

∫ ∞

0

(

k2

1 + k2

)

e−
1

2
k2b2 cos[(1 + k2)1/2t] cos(kx)dk

+

(

2

π

)1/2

h0b

∫ ∞

0

(

1

1 + k2

)

e−
1

2
k2b2 cos(kx)dk. (10.49)

From the inverse transform of (10.46) we have

h(x, 0) =

(

2

π

)1/2

h0b

∫ ∞

0
e−

1

2
k2b2 cos(kx)dk, (10.50)

while from (10.49) we deduce that

h(x,∞) =

(

2

π

)1/2

h0b

∫ ∞

0

(

1

1 + k2

)

e−
1

2
k2b2 cos(kx)dk ≈

{

0 if b << 1,
h(x, 0) if b >> 1.

(10.51)

Thus, by comparing (10.50) and (10.51), if b << 1, the pressure adjusts to the wind, while if b >> 1, the wind adjusts
to the pressure.

10.5 Invertibility principle
Now let us see if we can bypass the solution of the transient problem altogether and go directly to the final adjusted

state in physical space. This is the simplest possible example of the invertibility principle. As an example let us now
find the final geostrophically adjusted state when the initial state is

u(x, 0) = v(x, 0) = 0, h(x, 0) =

{

−1 |x| < b

0 |x| > b.
(10.52)

According to the linearized potential vorticity principle (10.14),

dv(x,∞)

dx
− h(x,∞) =

dv(x, 0)

dx
− h(x, 0). (10.53)

Regardless of the initial conditions, we know that the time evolution of the divergent part of the flow is such that u
approaches zero in an oscillatory decay. Then, if we wait long enough, (10.11) implies that

v(x,∞) =
dh(x,∞)

dx
. (10.54)

When (10.52) and (10.54) are substituted into (10.53), we obtain

d2h(x,∞)

dx2
− h(x,∞) =

{

1 |x| < b

0 |x| > b.
(10.55)
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Figure 10.7: Plot of the final adjusted state (10.56).

The solution of (10.55) with h(x,∞) and dh(x,∞)/dx continuous is

h(x,∞) =

⎧

⎪

⎨

⎪

⎩

−ex sinh(b) −∞ < x ≤ −b

e−b cosh(x) − 1 − b ≤ x ≤ +b

−e−x sinh(b) + b ≤ x < +∞
(10.56)

v(x,∞) =

⎧

⎪

⎨

⎪

⎩

−ex sinh(b) −∞ < x ≤ −b

e−b sinh(x) − b ≤ x ≤ +b

e−x sinh(b) + b ≤ x < +∞
(10.57)

Figure 10.7 displays h(x,∞) as a function of x/b for three different values of b. Since the unit for measuring b is the
Rossby length c/f , we obtain the following “dimensional form” of geostrophic adjustment rules.

⋆ For b >> c/f (horizontal scale of initial disturbance is much larger than the Rossby length) or b/c >> 1/f
(propagation time of gravity wave out of disturbed region is much longer than Foucault pendulum period), the
pressure hardly changes and the wind adjusts to the pressure.

⋆ For b << c/f (horizontal scale of initial disturbance is much smaller than the Rossby length) or b/c << 1/f
(propagation time of gravity wave out of disturbed region is much shorter than Foucault pendulum period), the
wind hardly changes and the pressure adjusts to the wind.

The total energy principle associated with (10.11)–(10.13) can be found by adding u times (10.11), v times (10.12),
and h times (10.13). This results in

∂

∂t

[

1
2 (u2 + v2 + h2)

]

+
∂(uh)

∂x
= 0. (10.58)
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Integrating (10.58) over the domain we obtain

d

dt

∞
∫

−∞

1
2 (u2 + v2 + h2)dx = 0. (10.59)

Let us now define

P0 =

∞
∫

−∞

1
2h2(x, 0)dx (10.60)

to be the initial potential energy. Since there is no initial kinetic energy, P0 can also be interpreted as the initial total
energy. Let us also define

K∞ + P∞ =

∞
∫

−∞

1
2

[

v2(x,∞) + h2(x,∞)
]

dx (10.61)

as the final total energy associated with the geostrophic flow. Using the initial condition (10.52) in (10.60) we can
evaluate the integral and obtain the initial potential energy P0. Similarly, using the solution (10.56)–(10.57) we can
evaluate the integral in (10.61) to obtain K∞ + P∞. The ratio of the final energy in the geostrophic flow to the initial
energy is

K∞ + P∞

P0
= 1 +

1

2b

(

e−2b − 1
)

. (10.62)

This relationship is plotted in Fig. 10.8, from which we obtain the following “dimensional” rules.

⋆ For b >> c/f (horizontal scale of initial disturbance is much larger than the Rossby length) or b/c >> 1/f
(propagation time of gravity wave out of disturbed region is much longer than Foucault pendulum period), only
a small percentage of the initial energy escapes with the gravity-inertia waves.

⋆ For b << c/f (horizontal scale of initial disturbance is much smaller than the Rossby length) or b/c << 1/f
(propagation time of gravity wave out of disturbed region is much shorter than Foucault pendulum period), a
large percentage of the initial energy escapes with the gravity-inertia waves.

10.6 The concept of a balanced model
Suppose the mass source/sink term in (10.13) varies slowly enough in time that the magnitude of ∂u/∂t remains

small compared to the magnitude of the Coriolis and pressure gradient terms in (10.11). In other words, the rotational
flow v is always close to geostrophic balance. However, the fluid is evolving from one geostrophic state to another
since both v and h are changing as mass is added or removed from the fluid layer. Then we might approximate the
primitive equation system (10.11)–(10.13) by the balanced system

v =
∂h

∂x
, (10.63)

∂v

∂t
+ u = 0, (10.64)

∂h

∂t
+

∂u

∂x
= Q(x)α2te−αt. (10.65)

This does not mean we are assuming ∂u/∂t is zero, but rather that its magnitude is small compared to v and ∂h/∂x. In
fact, we shall see that the balanced system produces solutions with nonzero ∂u/∂t. However, if the nonzero ∂u/∂t is
small, the solutions of the balanced system (10.63)–(10.65) will be very close to the solutions of the primitive system
(10.11)–(10.13).

It can be argued that the form of (10.63)–(10.65), while correct for our balanced model, is inconvenient because v
and h are independently predicted by (10.64) and (10.65), but according to (10.63) these two fields are diagnostically
coupled and do not independently evolve. According to this argument, a convenient form of the balanced system is one
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Figure 10.8: Plot of the energy partition according to (10.62).

that consists of a single prognostic equation. If we take ∂/∂x of (10.65), and then subtract (10.64) from the resulting
equation, we obtain (10.67) below. Since (10.67) is derived from (10.64) and (10.65), if we are going to use (10.67)
as one of our equations, we must discard either (10.64) or (10.65). Let us discard (10.64). Then our balanced system
can be written as

∂h

∂t
+

∂u

∂x
= Qα2te−αt, (10.66)

∂2u

∂x2
− u =

∂Q

∂x
α2te−αt, (10.67)

v =
∂h

∂x
, (10.68)

which consists of one prognostic equation for h and two diagnostic equations to determine u and v from h.
Another convenient form of the balanced system can be obtained as follows. If we take ∂/∂x of (10.64), and then

subtract (10.65) from the resulting equation, we obtain (10.69) below, where P is defined by the invertibility relation
(10.70). Then our balanced system can be written as

∂P

∂t
= −Qα2te−αt, (10.69)

∂2h

∂x2
− h = P, (10.70)

v =
∂h

∂x
, (10.71)

which consists of one prognostic equation for the potential vorticity P and two diagnostic equations to determine h
and v. Note that the divergent wind component u does not need to be determined in this form of balanced theory. Note
also that the invertibility problem (10.70) is the same problem discussed in section 10.5 for the final geostrophically
balanced state in our geostrophic adjustment theory. An important difference is that in section 10.5 the invertibility
problem was solved only once for the final balanced state; in contrast, (10.70) is solved at every time as P and the
associated wind and mass fields continuously evolve from one balanced state to another.
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The concept of a balanced model fits well with our experience looking at daily weather maps. For example,
consider a time sequence of 500 mb charts. What we see is a flow which is always close to geostrophic balance,
but which changes from day to day. The PV field is evolving in time as troughs and ridges shift their positions and
change their shapes. It seems that PV is the one field that should be predicted and that the balanced wind and mass
fields should be obtained by inverting the PV, just as in (10.70). Of course, in a practical sense, (10.69)–(10.71) do
not constitute a useful numerical weather prediction model because they omit vertical structure and all the nonlinear
terms. However, they are a conceptually useful guide in formulating quasi-geostrophic and semi-geostrophic theories,
topics which will be explored in later chapters.

10.7 The two-dimensional case
To generalize the one-dimensional results of the previous sections let us now return to the two-dimensional equa-

tions (10.8)–(10.10). These equations were first solved by Obukhov (1949) using a Green’s function approach. Here
we take a different approach, solving (10.8)–(10.10) via a horizontal normal mode transform.

We construct the horizontal normal mode transform in two steps as follows. First, we introduce the double Fourier
transform pair

u(x, y, t) =
1

2π

∫

∞
∫

−∞

û(k, l, t)ei(kx+ly)dkdl, (10.72a)

û(k, l, t) =
1

2π

∫

∞
∫

−∞

u(x, y, t)e−i(kx+ly)dxdy, (10.72b)

where k and l are horizontal wavenumbers. Similar transform pairs exist for v and h. Transforming (10.8)–(10.10)
and assuming that the solution is localized in space we obtain

dû

dt
− v̂ + ikĥ = 0, (10.73)

dv̂

dt
+ û + ilĥ = 0, (10.74)

dĥ

dt
+ ikû + ilv̂ = 0, (10.75)

with k and l now regarded as parameters. We can write (10.73)–(10.75) in matrix form as

dŵ

dt
+ Aŵ = 0, (10.76)

where

ŵ =

⎡

⎣

û
v̂
ĥ

⎤

⎦ , A =

⎡

⎣

0 −1 ik
1 0 il
ik il 0

⎤

⎦ . (10.77)

Note that the vector components here refer to the three dependent variables û, v̂, ĥ rather than to three space coordi-
nates.

Second, we reduce (10.76) to three decoupled scalar equations by diagonalizing A. Since A is skew-Hermitian
(i.e., A∗ = −A, where the asterisk denotes the conjugate transpose), its eigenvalues are pure imaginary; therefore, we
write the eigenvalue problem as

AΨ̂
(r) + iνrΨ̂

(r) = 0 (r = 0, 1, 2). (10.78)

The eigenvalues are given by ν0 = 0, ν1 = −ν and ν2 = +ν, where ν = (1 + k2 + l2)1/2, with the corresponding
eigenvectors

Ψ̂
(0) =

1

ν

⎡

⎣

il
−ik
−1

⎤

⎦ , Ψ̂
(1) =

1

µν
√

2

⎡

⎣

νk + il
νl − ik

µ2

⎤

⎦ , Ψ̂
(2) =

1

µν
√

2

⎡

⎣

−νk + il
−νl − ik

µ2

⎤

⎦ , (10.79)
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where µ = (k2+ l2)1/2. SinceA is skew-Hermitian these eigenvectors are orthogonal; they have also been normalized
so that

[

Ψ̂
(r)

]∗
Ψ̂

(s) =

{

1 r = s

0 r ̸= s.
(10.80)

Using this orthonormality we can complete the horizontal normal mode transform by defining

ŵr(k, l, t) =
[

Ψ̂
(r)

]∗
ŵ(k, l, t) (r = 0, 1, 2), (10.81a)

or in expanded form

⎡

⎢

⎢

⎣

ŵ0(k, l, t)

ŵ1(k, l, t)

ŵ2(k, l, t)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
il

ν

ik

ν
−

1

ν

νk − il

µν
√

2

νl + ik

µν
√

2

µ2

µν
√

2
−νk − il

µν
√

2

−νl + ik

µν
√

2

µ2

µν
√

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

û(k, l, t)

v̂(k, l, t)

ĥ(k, l, t)

⎤

⎥

⎥

⎦

. (10.81b)

The inverse of (10.81) is

ŵ(k, l, t) =
2

∑

r=0

ŵr(k, l, t)Ψ̂(r)(k, l), (10.82a)

or in expanded form
⎡

⎢

⎢

⎣

û(k, l, t)

v̂(k, l, t)

ĥ(k, l, t)

⎤

⎥

⎥

⎦

= ŵ0(k, l, t)
1

ν

⎡

⎢

⎢

⎣

il

−ik

−1

⎤

⎥

⎥

⎦

+ ŵ1(k, l, t)
1

µν
√

2

⎡

⎢

⎢

⎣

νk + il

νl − ik

µ2

⎤

⎥

⎥

⎦

+ ŵ2(k, l, t)
1

µν
√

2

⎡

⎢

⎢

⎣

−νk + il

−νl − ik

µ2

⎤

⎥

⎥

⎦

. (10.82b)

Substituting (10.82) into (10.76) we obtain the oscillation equation

dŵr

dt
− iνrŵr = 0 (r = 0, 1, 2), (10.83)

which can be solved directly to yield

ŵr(k, l, t) = ŵr(k, l, 0)eiνrt (r = 0, 1, 2). (10.84)

To see the solution in more detail we can use (10.84) in (10.82b) to obtain

û(k, l, t) =
il

ν
ŵ0(k, l, 0) +

νk + il

µν
√

2
ŵ1(k, l, 0)e−iνt +

−νk + il

µν
√

2
ŵ2(k, l, 0)eiνt, (10.85a)

v̂(k, l, t) = −
ik

ν
ŵ0(k, l, 0) +

νl − ik

µν
√

2
ŵ1(k, l, 0)e−iνt +

−νl − ik

µν
√

2
ŵ2(k, l, 0)eiνt, (10.85b)

ĥ(k, l, t) = −
1

ν
ŵ0(k, l, 0) +

µ

ν
√

2
ŵ1(k, l, 0)e−iνt +

µ

ν
√

2
ŵ2(k, l, 0)eiνt, (10.85c)

where

ŵ0(k, l, 0) =
1

ν

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

,

ŵ1(k, l, 0) =
1

µν
√

2

[

−iνδ̂(k, l, 0) + ζ̂(k, l, 0) + µ2ĥ(k, l, 0)
]

,

ŵ2(k, l, 0) =
1

µν
√

2

[

iνδ̂(k, l, 0) + ζ̂(k, l, 0) + µ2ĥ(k, l, 0)
]

,
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ζ̂ = ikv̂ − ilû,

δ̂ = ikû + ilv̂.

Equations (10.85a–c) constitute the solution in spectral space. The first term in each equation is the geostrophic
mode while the remaining two terms are the gravity-inertia modes. To get u(x, y, t), v(x, y, t) and h(x, y, t) we
substitute (10.85a–c) into (10.72a) and its companions. For the special case where the initial divergence is zero (i.e.,
δ̂(k, l, 0) = 0), this results in

u(x, y, t) =
1

2π

∫

∞
∫

−∞

i

µ2ν2

[

ζ̂(k, l, 0) + µ2ĥ(k, l, 0)
]

[l cos(νt) − νk sin(νt)] ei(kx+ly)dkdl

+
1

2π

∫

∞
∫

−∞

il

ν2

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

ei(kx+ly)dkdl, (10.86)

v(x, y, t) = −
1

2π

∫

∞
∫

−∞

i

µ2ν2

[

ζ̂(k, l, 0) + µ2ĥ(k, l, 0)
]

[k cos(νt) + νl sin(νt)] ei(kx+ly)dkdl

−
1

2π

∫

∞
∫

−∞

ik

ν2

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

ei(kx+ly)dkdl, (10.87)

h(x, y, t) =
1

2π

∫

∞
∫

−∞

1

ν2

[

ζ̂(k, l, 0) + µ2ĥ(k, l, 0)
]

cos(νt)ei(kx+ly)dkdl

−
1

2π

∫

∞
∫

−∞

1

ν2

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

ei(kx+ly)dkdl. (10.88)

In summary, for the unforced case, the solution of (10.8)–(10.10) is obtained as follows. First, the initial conditions are
transformed to spectral space using (10.72b) and its companions. The solution at time t can then be computed from
(10.86)–(10.88). In this way the solution may be obtained at any finite time t without having to integrate the system
(10.8)–(10.10) in time from 0 to t. In general the integrals over k and l must be evaluated by numerical quadrature.

An interesting way to look at the solution (10.86)–(10.88) is in terms of the two parts of the potential vorticity
ζ(x, y, t) − h(x, y, t). Taking ∂(10.87)/∂x − ∂(10.86)/∂y, we can show that the solution for the vorticity field can
be written as

ζ(x, y, t) =
1

2π

∫

∞
∫

−∞

(

1

1 + k2 + l2

)

[

ζ̂(k, l, 0) + (k2 + l2)ĥ(k, l, 0)
]

cos[(1 + k2 + l2)1/2t]ei(kx+ly)dkdl

+
1

2π

∫

∞
∫

−∞

(

k2 + l2

1 + k2 + l2

)

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

ei(kx+ly)dkdl, (10.89)

while (10.88) can be written in the somewhat expanded form

h(x, y, t) =
1

2π

∫

∞
∫

−∞

(

1

1 + k2 + l2

)

[

ζ̂(k, l, 0) + (k2 + l2)ĥ(k, l, 0)
]

cos[(1 + k2 + l2)1/2t]ei(kx+ly)dkdl

−
1

2π

∫

∞
∫

−∞

(

1

1 + k2 + l2

)

[

ζ̂(k, l, 0) − ĥ(k, l, 0)
]

ei(kx+ly)dkdl. (10.90)
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The first terms on the right of (10.89) and (10.90) are identical and represent the gravity-inertia wave part of the
solution. When (10.90) is subtracted from (10.89) to form the potential vorticity ζ(x, y, t) − h(x, y, t), the gravity-
inertia wave contributions cancel. This cancellation of terms is equivalent to the statements that the gravity-inertia
waves have zero potential vorticity and gravity-inertia waves are invisible on potential vorticity maps. If we wait long
enough the gravity-inertia waves will propagate away from a region which is initially out of geostrophic balance, and
local geostrophic balance will be reestablished. Then, only the last terms of (10.89) and (10.90) will be locally relevant.
Now define ζ̂g(k, l, 0) and ĥg(k, l, 0) by ζ̂g(k, l, 0) = −(k2 + l2)ĥ(k, l, 0) and ζ̂(k, l, 0) = −(k2 + l2)ĥg(k, l, 0)
respectively. Then, (10.89) and (10.90) can be written as

ζ(x, y,∞) =
1

2π

∫

∞
∫

−∞

{(

k2 + l2

1 + k2 + l2

)

ζ̂(k, l, 0) +

(

1

1 + k2 + l2

)

ζ̂g(k, l, 0)

}

ei(kx+ly)dkdl, (10.91a)

h(x, y,∞) =
1

2π

∫

∞
∫

−∞

{(

k2 + l2

1 + k2 + l2

)

ĥg(k, l, 0) +

(

1

1 + k2 + l2

)

ĥ(k, l, 0)

}

ei(kx+ly)dkdl. (10.91b)

We may interpret (k2 + l2)/(1 + k2 + l2) as the spectral modification of an initial vorticity disturbance and note that
low wavenumbers are eliminated. Likewise, 1/(1 + k2 + l2) is the spectral moditication of an initial geopotential
disturbance, with high wavenumbers being eliminated.

Problems

1. Derive the nondimensional equations (10.8)–(10.10) from the dimensional equations (10.5)–(10.7).

2. Prove that (10.56) is the solution of (10.55) with the required continuity properties.

3. Derive (10.62). Hint: To save work, evaluate the energy integrals only over half the domain (0 ≤ x < ∞), then
multiply this result by two in order to obtain the energy over the whole domain.

4. Derive the spectral space equations (10.73)–(10.75) from the physical space equations (10.8)–(10.10).

5. Prove the Ψ̂(1) is orthogonal to Ψ̂(2).

6. Derive (10.83) from (10.76).
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Appendix 10A: The Laplace Transform Method
We now wish to solve the one-dimensional, f -plane, geostrophic adjustment problem

ut − v + hx = 0, (10A.1)

vt + u = 0, (10A.2)

ht + ux = 0, (10A.3)

by Laplace transforms. It’s easy to eliminate v and h from the system (10A.1)–(10A.3). The procedure is to take the
time derivative of (10A.1), use (10A.2) to eliminate vt, and then use the x-derivative of (10A.3) to eliminate htx. We
then obtain

utt + u − uxx = 0, (10A.4)
a second order partial differential equation for u(x, t). It’s harder, but still possible, to eliminate u and h from (10A.1)–
(10A.3) to obtain a single second order partial differential equation for v, or to eliminate u and v to obtain a single
second order partial differential equation for h. Both of these derivations require use of the potential vorticity conser-
vation principle. The potential vorticity conservation principle is obtained by subtracting (10A.3) from the x-derivative
of (10A.2), which results in

(vx − h)t = 0. (10A.5)
The local conservation principle (10A.5) can be integrated to yield

vx(x, t) − h(x, t) = vx(x, 0) − h(x, 0). (10A.6)

To obtain the single equation for v, take the time derivative of (10A.2), use (10A.1) to eliminate ut, and then use the
x-derivative of (10A.6) to eliminate hx. We then obtain

vtt + v − vxx = −[vx(x, 0) − h(x, 0)]x. (10A.7)

To obtain the single equation for h, take the time derivative of (10A.3), use the x-derivative of (10A.1) to eliminate
uxt, and then use (10A.6) to eliminate vx. We then obtain

htt + h − hxx = −[vx(x, 0) − h(x, 0)]. (10A.8)

Thus, we could solve the coupled, first order system (10A.1)–(10A.3) for u(x, t), v(x, t), and h(x, t), or we could
solve each of the single equations (10A.4), (10A.7), and (10A.8).

The one sided Laplace transforms of u(x, t), v(x, t), and h(x, t) are defined by

û(x, s) =

∫ ∞

0
u(x, t)e−stdt, (10A.9)

v̂(x, s) =

∫ ∞

0
v(x, t)e−stdt, (10A.10)

ĥ(x, s) =

∫ ∞

0
h(x, t)e−stdt. (10A.11)

The Laplace transforms û(x, s), v̂(x, s), and ĥ(x, s) are functions of the complex variable s. If the integrals (10A.9)–
(10A.11) converge at a point s = s0, then they converge for every s such that Re s > Re s0. The inverse transforms
of (10A.9)–(10A.11) are the Bromwich integrals

u(x, t) =
1

2πi

∫ c+i∞

c−i∞
û(x, s)estds, (10A.12)

v(x, t) =
1

2πi

∫ c+i∞

c−i∞
v̂(x, s)estds, (10A.13)

h(x, t) =
1

2πi

∫ c+i∞

c−i∞
ĥ(x, s)estds, (10A.14)
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where c is chosen so that the contour of integration lies to the right of all poles.
The Laplace transforms of the partial differential equations (10A.1)–(10A.3) are the ordinary differential equations

sû(x, s) − v̂(x, s) + ĥx(x, s) = u(x, 0), (10A.15)

sv̂(x, s) + û(x, s) = v(x, 0), (10A.16)

sĥ(x, s) + ûx(x, s) = h(x, 0). (10A.17)

Again, it’s easy to eliminate v̂ and ĥ from the system (10A.15)–(10A.17). The procedure is to multiply (10A.15) by
s, use (10A.16) to eliminate sv̂, and then use the x-derivative of (10A.17) to eliminate ĥx. We then obtain

ûxx − (1 + s2)û = −su(x, 0) + hx(x, 0) − v(x, 0), (10A.18)

a second order ordinary differential equation for û(x, s). Equation (10A.18) can also be obtained by Laplace trans-
forming (10A.4). To obtain the single ordinary differential equation for v̂, or the one for ĥ, we again need the potential
vorticity principle. This is obtained by substracting (10A.17) from the x-derivative of (10A.16), which yields

v̂x − ĥ =
1

s
[vx(x, 0) − h(x, 0)] . (10A.19)

To obtain the single equation for v̂, multiply (10A.16) by s, use (10A.15) to eliminate sû, and then use the x-derivative
of (10A.19) to eliminate ĥx. We then obtain

v̂xx − (1 + s2)v̂ = ux(x, 0) − sh(x, 0) +
1

s
[vx(x, 0) − h(x, 0)]. (10A.20)

To obtain the single equation for ĥ, multiply (10A.17) by s, use (10A.15) to eliminate sû, and then use the x-derivative
of (10A.18) to eliminate ĥx. We then obtain

ĥxx − (1 + s2)ĥ = −ht(x, 0) − sh(x, 0) +
1

s
[vx(x, 0) − h(x, 0)]. (10A.21)

Note that (10A.20) and (10A.21) can also be obtained by Laplace transforming (10A.7) and (10A.8) respectively.
Let’s first solve (10A.18) for the case u(x, 0) = 0 and v(x, 0) − hx(x, 0) = δ(x − x′). The solution is

û(x, s) = 1
2

(

1 + s2
)−1/2

e−(1+s2)1/2|x−x′|, (10A.22)

so that, by (10A.12),

u(x, t) =
1

2πi

∫ c+i∞

c−i∞

1
2

(

1 + s2
)−1/2

e−(1+s2)1/2|x−x′|estds. (10A.23)

This integral can be evaluated (Oberhettinger and Badii, page 261) to give

u(x, t) =

{

1
2J0

(

[

t2 − (x − x′)2
]1/2

)

if x′ − t < x < x′ + t

0 otherwise
(10A.24)

which is the same solution we obtained using Fourier transforms.

10A-2



CSU ATS601/602 Fall 2008

Appendix 10B: Riemann’s Method
We want to solve the initial value problem

utt + u − uxx = 0, (10B.1)

with u(x, 0) and ut(x, 0) given. Let U(x, t) be a solution of the equation

Utt + U − Uxx = 0, (10B.2)

with different initial conditions. Multiplying (10B.1) by U and (10B.2) by u, and then taking the difference of these
two results, we obtain

(Uux − uUx)x + (uUt − Uut)t = u (Utt + U − Uxx) − U (utt + u − uxx) = 0, (10B.3)

where the first equality is easily confirmed by expanding the derivatives of the products on the left hand side, and
where the second equality follows because u(x, t) and U(x, t) are solutions of (10B.1) and (10B.2) respectively. We
now integrate (10B.3) over the domain D, a region of the (x, t)-plane bounded by the closed curve C. Since the left
hand side of (10B.3) is a divergence in the (x, t)-plane, we obtain

0 =

∫∫

D
[(Uux − uUx)x + (uUt − Uut)t] dx dt

=

∫

C
{(Uut − uUt)dx + (Uux − uUx)dt}

=

∫

C
{U(utdx + uxdt) − u(Utdx + Uxdt)} .

(10B.4)

Now consider D to be the triangular domain defined by PQR in Fig. 10B.1. Then, since dt = 0 on QR, dx = −dt
on RP , and dx = dt on PQ, (10B.4) becomes

0 =

∫

QR
(Uut − uUt)dx −

∫

RP
{U(utdt + uxdx) − u(Utdt + Uxdx)} (10B.5)

+

∫

PQ
{U(utdt + uxdx) − u(Utdt + Uxdx)} (10B.6)

=

∫

QR
(Uut − uUt)dx −

∫

RP
(Udu − udU) +

∫

PQ
(Udu − udU) (10B.7)

We have the freedom to choose the values of U(x, t) along the lines RP and PQ. If U = 1 on both RP and PQ,
then dU = 0 on both RP and PQ and (10B.5) can be simplified and rearranged to yield

uP = 1
2uQ + 1

2uR + 1
2

∫

QR
(Uut − uUt)dx. (10B.8)

U is often referred to as the Riemann-Green1 function. The Riemann-Green function is obviously a function of
(x, t), but it also depends on (x′, t′) since, as we move the point P , we also move the lines along which U = 1.
To remind ourselves of this dependence we shall use the notation U(x, t;x′, t′) for the Riemann-Green function and
Ut(x, t;x′, t′) for its partial derivative with respect to t. Identifying the point P as (x, t) = (x′, t′), the point Q as
(x, t) = (x′ − t′, 0), and the point R as (x, t) = (x′ + t′, 0), we can write (10B.6) in the alternative form

u(x′, t′) = 1
2u(x′ − t′, 0) + 1

2u(x′ + t′, 0) + 1
2

∫ x′+t′

x′−t′
[U(x, 0;x′, t′)ut(x, 0) − u(x, 0)Ut(x, 0;x′, t′)] dx. (10B.9)

1In honor of Bernhard Riemann (1826–1866), Professor of Mathematics at the University of Göttingen, Germany, and George Green (1793–
1841), the self-taught son of a miller from Nottingham, England; it was Green who made the first attempt at a mathematical theory of electromag-
netism, later beautifully formulated by James Clerk Maxwell in the triumph of 19th century physics.
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x = x'x = x' - t'

t = t'

t

x = x' + t'

P

(x',t')

RQ

dx 
= 

dt dx = -dt

x

Figure 10B.1: Triangular domain D of the (x, t)-plane, with the domain D defined by PQR. Note that dt = 0 along
the line QR, while dx = −dt along the line RP , and dx = dt along the line PQ.

Equation (10B.7) expresses the solution of the initial value problem (10B.1) in terms of the initial conditions u(x, 0)
and ut(x, 0), and in terms of the solution U(x, t;x′, t′) of (10B.2).

To find the Riemann-Green function, consider the infinite series

U(x, t;x′, t′) = 1 +
∞
∑

k=1

ak

(k!)2
[

(t − t′)2 − (x − x′)2
]k

, (10B.10)

where the coefficients ak are yet-to-be-determined. Since t = t′ + (x − x′) along the line PQ and t = t′ − (x − x′)
along the line RP , then along these lines (t − t′)2 − (x − x′)2 = 0, and, according to (10B.8), U = 1. Substituting
(10B.8) into (10B.2), we obtain

1 + 4a1 +
∞
∑

k=1

ak + 4ak+1

(k!)2
[

(t − t′)2 − (x − x′)2
]k

= 0, (10B.11)

so that a1 = −1/4 and ak+1 = −(1/4)ak for k = 1, 2, . . ., or equivalently ak = (−1/4)k. Using this last result in
(10B.8), we obtain

U(x, t;x′, t′) =
∞
∑

k=0

(−1)k

22k(k!)2
[

(t − t′)2 − (x − x′)2
]k

. (10B.12)

Since the zero order Bessel function is given by (see Abramowitz and Stegun, 1964, page 360)

J0(z) =
∞
∑

k=0

(−1)k

22k(k!)2
z2k = 1 −

1

22
z2 +

1

2242
z4 −

1

224262
z6 + · · · (10B.13)

we conclude that
U(x, t;x′, t′) = J0

(

[

(t − t′)2 − (x − x′)2
]1/2

)

. (10B.14)

Assuming u(x, 0) = 0, using (10B.12) in (10B.7), and switching the roles of the dummy variables (x, t) and (x′, t′),
we obtain

u(x, t) = 1
2

∫ x+t

x−t
ut(x

′, 0)J0

(

[

t2 − (x′ − x)2
]1/2

)

dx′, (10B.15)

which is identical to the solution we derived by Fourier transforms.
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