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Controlling the false discovery rate provides a computationally straightforward 

 approach to interpretation of multiple hypothesis tests.

“THE STIPPLING SHOWS 
STATISTICALLY SIGNIFICANT 

GRID POINTS”
How Research Results are Routinely Overstated and 

Overinterpreted, and What to Do about It

by D. S. Wilks

“A neglected aspect of statistical testing in a large 
number of geophysical studies has been the evalu-
ation of the collective significance of a finite set 
of individual significance tests. This neglect has 
stemmed…from a lack of understanding of the 
combined effects of number and interdependence 
of set numbers” (Livezey and Chen 1983).

More than 30 years have passed since the seminal 
paper by Livezey and Chen (1983) pointed out 
that collections of multiple statistical tests, often 

in the setting of individual tests at many spatial grid 

points, are very often interpreted incorrectly and in 
a way that leads to research results being overstated. 
That paper also proposed an approach to dealing 
with and protecting against that problem, which they 
called assessment of “field significance.” The idea was 
to construct a “metatest” using as input the results of 
the many individual tests to address the “global” null 
hypothesis that all individual “local” (e.g., grid point) 
null hypotheses are true. If the global null hypothesis 
cannot be rejected, one cannot conclude with adequate 
confidence that any of the individual local tests show 
meaningful violations of their respective null hypoth-
eses. Thus, failure to achieve field significance protects 
the analyst to a degree from being misled into believing 
results from the many erroneous rejections of true local 
gridpoint null hypotheses that will invariably occur.

Unfortunately, very little has changed during the 
intervening decades with respect to the overinterpre-
tation of multiple hypothesis tests in the atmospheric 
sciences literature. For example, of the 281 papers 
published in the Journal of Climate during the first 
half of 2014, 97 (34.5%) included maps described in 
part by some variant of the quotation in the title of 
this paper. These studies implicitly but wrongly rep-
resented that any individual gridpoint test exhibiting 
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rejections, but rather the number of erroneous rejec-
tions will be a random quantity. That is, the number 
of erroneous rejections will be different for different 
(possibly hypothetical) batches of the same kind of 
data, and for any particular batch this number will 
behave as if it had been drawn from a probability 
distribution whose mean is αN0.

If the results of these N0 hypothesis tests are statis-
tically independent, then the probability distribution 
for the number of erroneously rejected null hypoth-
eses will be binomial, yielding the probabilities for 
the possible numbers of erroneously rejected tests x,

	 Pr x N N x{ } ( )
−( ) −=

!
! − !

0 1 0

x xΝ 0

xα α ,	 (1)

	 x = 0, 1, …, N0.

One implication of this equation is that, unless N0 is 
relatively small, erroneously rejecting at least one of 
the true null hypotheses is nearly certain: for example, 
if α = 0.05 and N0 = 100 this probability is 0.994. Thus, 
some true null hypotheses will almost always be er-
roneously rejected in any realistic multiple-testing 
situation involving gridded data. Even though this 
number will be αN0 on average, Eq. (1) specifies 
nonnegligible probabilities for numbers of erroneous 
rejections that may be substantially larger than αN0. 
When the members of the collection of hypothesis 
tests are not independent, which is the usual situa-
tion for gridded data, Eq. (1) is no longer valid and 
the probabilities for numbers of erroneous rejections 
much larger than αN0 are even higher.

The problem of interpreting the results of N 
multiple simultaneous hypothesis tests is further 
complicated by the fact that the fraction of true null 
hypotheses N0/N is unknown, and also that some 
of the NA = N − N0 false null hypotheses may not be 
rejected. How, then, can a spatial field of hypothesis 
test results be interpreted in a statistically principled 
and scientifically meaningful way?

HISTORICAL DEVELOPMENT OF MUL-
TIPLE TESTING IN THE ATMOSPHERIC 
SCIENCES. Walker’s test. The question just posed 
has been confronted in the atmospheric sciences for 
more than a century, apparently having been ad-
dressed first by Walker (1914). Katz and Brown (1991), 
and Katz (2002) provide a modern perspective on 
Walker’s thinking on this subject.

Walker realized that an extreme value of a sample 
statistic (e.g., a small p value) is progressively more 
likely to be observed as more realizations of the 

nominal statistical significance was indicative of 
a physically meaningful result. By contrast, only 
3 of the 281 papers (1.1%) considered the effects of 
multiple hypothesis testing on their scientific conclu-
sions. (The remaining 64.4% of these papers either 
had no maps or did not attempt statistical inference 
on any of the mapped quantities.) These are disturb-
ing but unfortunately quite representative statistics. 
Consequences of the widespread and continued fail-
ure to address the issue of multiple hypothesis test-
ing are overstatement and overinterpretation of the 
scientific results, to the detriment of the discipline.

The purposes of this paper are to highlight prob-
lems relating to interpretation of multiple statistical 
tests, to provide some of the history related to this 
issue, and to describe and illustrate a straightforward 
and statistically principled approach—control of the 
false discovery rate (FDR)—to protecting against 
overstatement and overinterpretation of multiple-
testing results.

EXPOSITION OF THE MULTIPLE-TESTING 
PROBLEM. Computation of a single hypothesis test 
involves defining a null hypothesis H0, which will 
be rejected in favor of an alternative hypothesis HA 
if a sufficiently extreme value of the test statistic is 
observed (e.g., Wilks 2011). Rejection of H0 at a test 
level α occurs if the test statistic is sufficiently extreme 
that the probability (called the p value) of observing 
it or any other outcome even less favorable to H0, if 
that null hypothesis is true, is no larger than α. If H0 
is rejected with α = 0.05 (the most common, although 
an arbitrary choice), the result is said to be significant 
at the 5% level.1

Although perhaps intuitively attractive, it is quite 
incorrect to interpret a p value as the probability that 
the null hypothesis is true, given the evidence ex-
pressed in the observed test statistic (e.g., Ambaum 
2010). The correct interpretation is opposite: a p value 
is a probability related to the magnitude of a test sta-
tistic, assuming the truth of H0. The implication is that 
any true null hypothesis will be rejected with prob-
ability α (if the test has been formulated correctly), 
so that collections of N0 hypothesis tests whose null 
hypotheses are all true will exhibit, on average, αN0 
erroneous rejections. However, any particular col-
lection of N0 hypothesis tests whose null hypotheses 
are all true will rarely exhibit exactly αN0 erroneous 

1	In the atmospheric sciences literature, this conclusion is 
often expressed as significance “at the 95% level,” but that 
convention is inconsistent with mainstream terminology 
(e.g., Jolliffe 2004).
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statistic (e.g., more hypothesis tests) are examined, 
so that a progressively stricter standard for statisti-
cal significance must be imposed as the number of 
tests increases. To limit the probability of erroneously 
rejecting one or more of N0 true null hypotheses to an 
overall level α0, Walker’s criterion is that only indi-
vidual tests with p values no larger than αWalker should 
be regarded as significant, where (e.g., Wilks 2006)

	 α αWalker = − −( )1 1 0
1 0N

.	 (2)

Of course αWalker = α0 for a single (N0 = 1) test. 
To limit the probability of erroneously rejecting 
any of N0 = 100 true null hypotheses to the level 
α0 = 0.05, only those tests having p values smaller than 
αWalker = 0.000513 would be regarded as significant ac-
cording to this criterion. In contrast, as noted above, 
naïvely evaluating each of N0 = 100 independent tests 
having true null hypotheses at the α0 = 0.05 level (i.e., 
ignoring the multiple-testing problem) results in a 
0.994 probability that at least one true null hypothesis 
is erroneously rejected.

Equation (2) was derived under the (often unre-
alistic) assumption that the results of the individual 
tests are statistically independent, but in practice it 
is robust to (only modestly affected by) deviations 
from this assumption (Katz and Brown 1991; Wilks 
2006). On the other hand, although Eq. (2) will yield 
relatively few rejections of true null hypotheses, the 
Walker criterion is quite strict since αWalker ≈ α0/N, 
which compromises the sensitivity of the procedure 
for detecting false null hypotheses.

The field significance approach. Von Storch (1982) and 
Livezey and Chen (1983) cast the problem of evaluat-
ing multiple hypothesis tests as a metatest, or a global 
hypothesis test whose input data are the results of N 
local hypothesis tests. Because the individual local 
tests often pertain to a grid or other geographic ar-
ray, they can be thought of as composing a “field” of 
test results. Accordingly this approach to multiple 
testing is generally referred to as assessment of field 
significance (Livezey and Chen 1983). It has become 
the dominant paradigm for multiple testing in the 
atmospheric sciences, especially when the individual 
hypothesis tests pertain to a network of geographic 
locations.

The global null hypothesis is that all of the local 
null hypotheses are true, so that failure to reject 
the global null hypothesis implies that significant 
results have not been detected anywhere in the field 
of individual local tests. In the idealized case that the 
local null hypotheses are statistically independent, 

the binomial distribution [Eq. (1)] allows calculation 
of the minimum number of locally significant tests 
required to reject a global null hypothesis—that is, 
to achieve field significance. For example, again if 
N = 100 independent tests and α0 = 0.05, the global 
null hypothesis implies N0 = N = 100 so that on aver-
age (over many hypothetical realizations of the single 
testing situation for which we have data) 5 of the 100 
local null hypotheses are expected to be rejected. 
But in order to reject the global null hypothesis, an 
unusually large number of local test rejections must 
be observed. Equation (1) specifies that 10 or more 
such rejections are required in order to have smaller 
than αglobal = α0 = 0.05 probability of observing this or 
a more extreme result if the global null hypothesis is 
true. If fewer of these independent local tests have p 
values smaller than α0 = 0.05, then none of them are 
regarded as significant according to this criterion.

Assuming statistical independence among the 
local test results is a best-case situation. The usual 
condition of spatial correlation among the local 
gridpoint tests implies that even more local test re-
jections than implied by Eq. (1) are required in order 
to achieve field significance. However, exactly how 
many local test rejections are required depends on the 
nature of the underlying spatial correlation, and this 
threshold may be difficult to determine in a particular 
multiple-testing setting. One approach is to try to 
estimate an “effective number of independent tests” 
Neff < N and to use this value in Eq. (1), although often 
Neff cannot be estimated rigorously (von Storch and 
Zwiers 1999). Livezey and Chen (1983) also suggest 
estimating the frequency distribution for numbers of 
locally significant tests using Monte Carlo methods 
(i.e., randomly resampling the available data in a 
manner consistent with the global null hypothesis; 
e.g., Mielke et al. 1981; Zwiers 1987). This approach 
can require elaborate and computationally expensive 
calculations, especially if the data exhibit both tempo-
ral and spatial correlations (Wilks 1997), and in some 
test settings an appropriate Monte Carlo algorithm 
may not be available. Ignoring the effect of spatial 
correlation leads to highly inaccurate test results 
when using this method, with global null hypotheses 
being rejected much more frequently than specified 
by the nominal αglobal (von Storch 1982; Livezey and 
Chen 1983; Wilks 2006).

The Livezey–Chen procedure has other drawbacks 
beyond its sensitivity to spatial correlation. The most 
important of these are as follows:

i)	� The global test statistic involves only the numbers 
of locally significant tests but not their p values, so 
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that vanishingly small local p values can provide no 
more evidence against the global null hypothesis 
than do local tests for which p ≈ α0. Test sensitiv-
ity is consequently less than optimal because not 
all the available information is used (Zwiers 1987; 
Wilks 2006). This problem is particularly acute 
when the fraction of false null hypotheses is small.

ii)	� Having declared field significance, many of the 
local tests exhibiting p < α0 will have resulted from 
random and irreproducible f luctuations rather 
than physically real effects (Ventura et al. 2004; 
Wilks 2006). This problem is compounded in 
the presence of spatial correlation because these 
spurious “features” will tend to exhibit geographic 
coherence, potentially leading the analyst to over-
interpret the data in an attempt to explain them.

A PRINCIPLED AND STRAIGHTFORWARD 
SOLUTION—CONTROLLING THE FALSE 
DISCOVERY RATE. The problems just noted can 
be addressed by controlling FDR when analyzing the 
results of multiple hypothesis tests. The FDR is the 
statistically expected (i.e., average over analyses of hy-
pothetically many similar testing situations) fraction 
of local null hypothesis test rejections (“discoveries”) 
for which the respective null hypotheses are actu-
ally true. An upper limit for this fraction can be 
controlled exactly for independent local tests (and 
approximately for correlated local tests), regardless 
of the unknown proportion N0/N of local tests hav-
ing true null hypotheses. Benjamini and Hochberg 
(1995) first described this method, with a primary 
focus on medical statistics. It has become the domi-
nant, mainstream approach to evaluation of multiple 
hypothesis test results, both in the statistics literature 
and in the scientific literature more broadly, with 
Google Scholar listing more than 34,000 citations of 
the original (Benjamini and Hochberg 1995) paper. 
Ventura et al. (2004) introduced its use for multiple 
hypothesis tests pertaining to gridded atmospheric 
data, and Wilks (2006) demonstrated its relationship 
to the traditional field significance framework.

Although it is still not well known within the 
atmospheric sciences, the FDR method is the best 
available approach to analysis of multiple hypothesis 
test results, even when those results are mutually 
correlated. Its criterion of limiting the fraction of er-
roneously rejected null hypotheses is more relevant 
to scientific interpretation than is the traditional 
approach of limiting the probability that any given 
local test yields an erroneous rejection (Storey and 
Tibshirani 2003; Ventura et al. 2004). In particular, 
FDR control addresses (and, in a sense, puts a ceiling 

on) the probability that a rejected local null hypothesis 
is in fact true, whereas a p value quantifies the prob-
ability of results at least as inconsistent with the null 
hypothesis as the observed test statistic, under the as-
sumption that the null hypothesis is true. The former 
notion is more closely aligned with common intuition, 
and indeed p values are commonly misinterpreted in 
this way (e.g., Storey and Tibshirani 2003; Jolliffe 2004; 
Ambaum 2010), presumably because investigators 
often prefer this framing of scientific answers.

The FDR procedure is similar in spirit to Walker’s 
approach in that it requires a higher standard (i.e., 
smaller p values) in order to reject local null hy-
potheses. The algorithm operates on the collection 
of p values from N local hypothesis tests pi, with 
i = 1, …, N, which are first sorted in ascending order. 
Using a standard statistical notation, these sorted p 
values are denoted using parenthetical subscripts, so 
that p(1) ≤ p(2) ≤ … ≤ p(N). Local null hypotheses are 
rejected if their respective p values are no larger than 
a threshold level p*

FDR that depends on the distribution 
of the sorted p values:

	 p p p i N
i N i iFDR FDR

*

, ,
max : ,= ≤ ( )



= ( ) ( )1…

α 	 (3)

where αFDR is the chosen control level for the FDR. 
That is, the threshold p*

FDR for rejecting local null 
hypotheses is the largest p(i) that is no larger than the 
fraction of αFDR specified by i/N.

The Walker criterion [Eq. (2)] is very nearly the 
same as Eq. (3) if i = 1, so that the FDR procedure 
will be more sensitive to detecting false null hypoth-
eses to the extent that Eq. (3) is satisfied by a p(i) with 
i > 1, even as the expected fraction of false detec-
tions is maintained below αFDR. In addition, the FDR 
procedure can be interpreted as an approach to field 
significance. If none of the sorted p values satisfy the 
inequality in Eq. (3), then none of the respective null 
hypotheses can be rejected, implying also nonrejec-
tion of the global null hypothesis that they compose. 
Furthermore the size of that global hypothesis test 
(i.e., the probability of rejecting a global null hypoth-
esis if it is true), is αglobal = αFDR (Wilks 2006).

Even though Eq. (3) assumes statistical indepen-
dence among the local test results, the FDR procedure 
is (as will be illustrated in the following section) ap-
proximately valid (while being somewhat conserva-
tive) even when those results are strongly correlated, 
unlike the use of Eq. (1) to evaluate numbers of locally 
significant tests. This property greatly simplifies sta-
tistically principled evaluation of multiple hypothesis 
test results, since there is no need for elaborate Monte 
Carlo simulations. Indeed, having obtained the N 
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local p values, the most complicated computation 
required is merely their sorting into ascending order 
so that Eq. (3) can be evaluated.

SYNTHETIC-DATA EXAMPLES. Structure of 
the synthetic examples. It is instructive to compare the 
multiple-testing procedures in an artificial yet rela-
tively realistic setting, so that their properties can be 
evaluated in the context of a completely known data-
generating process. In this section, synthetic data will 
be defined on the N = 3720-point grid indicated in 
Fig. 1. The ordinate represents the 31 latitudes from 
20° to 80°N at increments of 2° and the horizontal 
dimension represents 360° of longitude at 3° incre-
ments, with a cyclic boundary. The four concentric 
thick outlines indicate regions, ranging in extent 
from 0.9% to 19.2% of the total number of grid points, 
where the local null hypotheses are not true.

The effects on the multiple-testing results of eight 
levels of spatial correlation of the underlying synthetic 
data will be investigated. Figure 2 shows the spatial au-
tocorrelation functions for these eight levels, of the form

	 r(d) = exp(–cd2),	 (4)

where d is the great-circle distance between two grid 
points. These eight spatial autocorrelation functions 
range in e-folding distance (i.e., average distance at 
which the data correlations drop below 1/e = 0.3679) 
from 0.1 × 103 km (nearly spatially independent) 
to 10 × 103 km (very strongly dependent). The star 
symbols in Fig. 2 indicate data for spatial autocor-
relation of the Northern Hemisphere 500-hPa height 
field taken from Polyak (1996), which are closely 
approximated by the heavy c = 0.42 (e-folding dis-
tance = 1.54 × 103 km) curve.

One of the strengths of the FDR method is that it 
is applicable to collections of p values from hypothesis 
tests of any form. In this section the FDR method is il-
lustrated using p values from one-sample t tests, with 
one local t test being computed for each of the 3720 

grid points shown in Fig. 1. 
The underlying synthetic 
data are random Gaussian 
fields with spatial correla-
tions governed by Eq. (4), 
generated using methods 
described in Wilks (2011, p. 
499). That is, the statistical 
distribution of the synthetic 
values at each grid point is 
standard Gaussian—that is, 
having zero mean and unit 

variance. For each realization of 3720 local hypothesis 
tests, 25 of these fields were generated, yielding 3720 
sample means and 3720 sample standard deviations 
(which are not assumed to be equal across the do-
main). From these quantities, the test statistics for 
3720 local one-sample t tests with H0: {µ = 0} having 
24 degrees of freedom at each grid point were com-
puted. The alternative hypothesis in each case is two 
sided: that is, HA: {µ ≠ 0}. In experiments where some 
of the local null hypotheses are false, all gridpoint 
sample means within one of the outlines shown in 
Fig. 1 were increased above zero by amounts ∆µ rang-
ing from 0.05 to 1.00. Using c = 0.42 yields spatial 

Fig. 2. Eight spatial autocorrelation functions of the 
form in Eq. (4). Stars indicate correlations for North-
ern Hemisphere 500-hPa heights from Polyak (1996).

Fig. 1. Hypothetical 3720-gridpoint domain, representing the Northern 
Hemisphere from 20° to 80°N. Concentric thick outlines indicate regions 
where local null hypotheses are not true.
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correlation corresponding to the magnitude typically 
exhibited by Northern Hemisphere 500-hPa height 
fields. Although the correlation function in Eq. (4) 
does not represent the characteristic wave structures 
in these fields, these are not important for the purpose 
of illustrating the effect of spatial correlation on the 
multiple testing.

Global test properties. Figure 3 illustrates the opera-
tion of the FDR procedure (diagonal lines), in con-
trast to the “naïve stippling” approach of accepting 
alternative hypotheses at any gridpoint for which a 
locally significant result occurs (dashed horizontal 
line). This figure corresponds to a particular real-
ization that will be examined later in more detail. 
The simulated data were generated with c = 0.42 
(realistic spatial autocorrelation), NA = 156 (4.2% of 
total grid points with false null hypotheses), and us-
ing the relatively large alternative-hypothesis mean 
∆µ = 0.7. The figure shows the smallest 350 of the 
3720 sorted p values p(i) as a function of their rank 
i. The dashed diagonal line indicates the threshold 
criterion defined by Eq. (3) using αFDR = 0.10, accord-
ing to which p*

FDR  = 0.003998 = p(150). That is, in this 
particular realization the local tests having the 150 
smallest p values are declared to exhibit statistically 

Fig. 3. Illustration of the FDR criterion using αFDR = 0.10 (dashed diagonal 
line), αFDR = 0.20 (dotted diagonal line), and the naïve stippling approach of 
rejecting any local test with p value smaller than α0 = 0.05 (dashed horizontal 
line). Plotted points are the smallest 350 sorted p values of 3720 local tests. 
Points below the diagonal lines represent significant results according to the 
two FDR control levels. Crosses represent six tests with true null hypotheses 
that were falsely rejected, and circles represent false local null hypotheses 
that were not rejected, when αFDR = 0.10. Inset shows closer view of points 
within the red box. The 345 tests with p values smaller than α0 = 0.05 would 
be declared significant under the naïve stippling procedure, even though a 
majority of these null hypotheses are true.

significant results. Of these, 144 are correct rejections, 
indicated by the dots below the dashed diagonal line. 
The twelve circles above the dashed diagonal line 
represent false null hypotheses that were not rejected. 
The six crosses below the dashed diagonal represent 
true null hypotheses that were erroneously rejected, 
yielding an achieved FDR = 6/150 = 0.04. The inset 
shows a closer view of the points within the red box.

The dotted diagonal line shows the thresh-
old from Eq. (3) when αFDR = 0.20, in which case 
p*

FDR = 0.009502 = p(183). In this case all NA = 156 false 
null hypotheses are detected, but at the expense of 
erroneously rejecting 27 true null hypotheses, yield-
ing an achieved FDR = 27/183 = 0.15. In contrast, the 
naïve stippling approach of rejecting any local null 
hypothesis for which the p value is less than α0 = 0.05 
(dashed horizontal line) detects all 156 false null 
hypotheses, but at the expense of erroneously reject-
ing 189 true null hypotheses (crosses and dots above 
the dashed diagonal), yielding an unacceptably large 
achieved FDR = 189/345 = 0.55: a majority of the 
nominally significant results are spurious.

Figure 4 illustrates the performance of the FDR 
procedure in terms of achieved global test levels 
as a function of the degree of spatial correlation. 
That is, in the situation of all local null hypotheses 

being true, the achieved 
level is the probability that 
the global nul l hypoth-
esis will be rejected [i.e., 
that at least one of the 
sorted p values will satisfy 
the condition in Eq. (3)], 
which ideally will equal 
αglobal = αFDR. These prob-
abilities are approximated 
in Fig. 4 as the correspond-
ing relative frequencies over 
105 simulated global tests. 
As expected, these achieved 
levels are approximately 
correct for small spatial cor-
relations but then decline 
fairly quickly and stabilize 
at about half the nominal 
levels. Thus, the FDR pro-
cedure is robust to the ef-
fects of spatial correlation, 
yielding a somewhat con-
servative global test when 
the spatial correlation is 
moderate or strong. That is, 
when the spatial correlation 
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is high, the achieved FDR will be smaller (more strict) 
than the nominal FDR. This is consistent with prior 
results (Ventura et al. 2004; Wilks 2006). Figure 4 sug-
gests that, for data grids exhibiting moderate to strong 
spatial correlation, approximately correct global test 
levels can be produced using the FDR procedure by 
choosing αFDR = 2αglobal.

In sharp contrast, the achieved test levels for the 
Livezey–Chen counting procedure, also with no ad-
justment for spatial correlation, are very strongly per-
missive. For example, using Eq. (1) and assuming spa-
tial independence yields a requirement for at least 208 
locally significant tests (5.6% of local null hypotheses 
rejected) for field significance with α0 = αglobal = 0.05. 
This criterion produces achieved global test levels of 
0.0907 and 0.3517 when the e-folding distances are 
0.2 and 1.54 × 103 km, respectively (results not shown 
in the figure). The naïve stippling interpretation that 
any significant local test implies field significance is 
even worse, as it produces an achieved global test level 
of unity: at least one of the 3720 local tests is virtually 
certain to exhibit a spurious null hypothesis rejection, 
regardless of the strength of the spatial correlation 
within the range considered in Fig. 4.

Local test interpretations. Often the primary interest will 
be interpretation of the locations and spatial patterns 
of the locally significant test results, which might be 
interpreted as “signal.” Reliability of these interpreta-
tions will of course be enhanced to the extent that they 
are minimally contaminated with erroneous rejec-
tions of true local null hypotheses (“noise”). Figure 5 
shows false discovery rates for the FDR method with 
αFDR = 0.10 (red), the Livezey–Chen counting approach 
with α0 = αglobal = 0.05 (black), and the naïve stippling 
approach of rejecting any local null hypothesis whose 
p value is no larger than the nominal α0 = 0.05 (brown), 
as functions of numbers of false local null hypotheses 
and alternative-hypothesis magnitudes ∆µ, for the 
realistic e-folding distance 1.54 × 103 km. The plotted 
values are averages over 103 realizations, so that, for 
example, the quantities contributed to the averages 
from the particular realization shown in Fig. 3 are 
6/150 = 0.04 for the FDR procedure, 189/345 = 0.55 
for the naïve stippling procedure, and zero for the 
Livezey–Chen counting procedure because fewer than 
the required 365 local tests2 were significant at the 5% 

level (the global null hypothesis could not be rejected). 
As expected, the FDR procedure controls the false dis-
covery rates very tightly. The Livezey–Chen procedure 
also exhibits small false discovery rates for the smallest 
number of false local null hypotheses, but primarily 
because very few global null hypotheses can be rejected 
regardless of the magnitude of ∆µ. For larger numbers 
of false local null hypotheses, the Livezey–Chen pro-
cedure yields much larger false discovery rates. Worst 
performance of all is exhibited by the naïve stippling 
procedure, for which nearly all local test rejections are 
incorrect when ∆µ is small, and which converges to 
the Livezey–Chen result for large ∆µ and NA since in 
these cases the Livezey–Chen procedure declares field 
significance in nearly all realizations.

To help visualize the foregoing more concretely, 
Fig. 6 shows maps for a particular realization, in-
terpreted according to the FDR procedure with 
αFDR = 0.10 (Fig. 6a) and the naïve stippling approach 
using α0 = 0.05 (Fig. 6b). Correct local null hypothesis 
rejections are indicated by plus signs, failures to reject 

Fig. 4. Achieved global test levels (probabilities of 
rejecting true global null hypotheses) when using the 
FDR procedure, as a function of spatial correlation 
strength. For moderate and strong spatial correla-
tion, approximately correct results can be achieved 
by choosing αFDR = 2αglobal.

2	Note that it is not clear how to design a Monte Carlo procedure 
to determine this cutoff for field significance in the present 
setting because it involves a one-sample test, but the 365-count 
threshold can be computed for this artificial example because 
the underlying data-generating process is known.
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false local null hypotheses are indicated by circles, 
and erroneous rejections of true null hypotheses 
are indicated by crosses. These maps correspond to 
the ranked p values shown in Fig. 3, with NA = 156, 
∆µ = 0.7, and e-folding distance 1.54 × 103 km. In 
Fig. 6a the FDR procedure fails to reject 12 of the 156 
false null hypotheses (circles) but erroneously rejects 
only 6 true null hypotheses (crosses). The result is that 
the FDR procedure locates the true signal very effec-
tively while introducing very little noise. By contrast, 
in Fig. 6b the naïve stippling procedure locates all 156 
false null hypotheses but also erroneously indicates 
another 189 nominally significant grid points. The 
very large additional noise level in Fig. 6b would make 
physical interpretation of this map difficult, possibly 
leading an analyst to stretch his or her imagination 
to rationalize the many spurious local test rejections, 
which may appear to be physically coherent structures 
because of the strong spatial autocorrelation in the 
underlying data. Again, because the number of false 

null hypotheses is relatively small, the Livezey–Chen 
procedure would fail to reject the global null hypoth-
esis, leading an analyst to doubt the reality of any of 
the local test rejections shown in Fig. 6b, even though 
some of the p values are extremely small.

A REAL-DATA EXAMPLE. Figure 7 shows an 
analysis of linear trends in annual precipitation for 
the period 1951–2010, modified from an original fig-
ure in Hartmann et al. (2013, p. 203). The underlying 
data are monthly precipitation values interpolated to 
a 5° × 5° grid from the Global Historical Climatol-
ogy Network (Vose et al. 1992). The colored patches 
locate the 408 grid elements having at least 42 (70%) 
complete calendar years and at least two complete 
years during 1951–56 and 2005–10 (Hartmann et al. 
2013). The 128 grid elements with linear trends 
exhibiting regression slopes that are large enough 
in absolute value to achieve local statistical signifi-
cance at the α = 0.10 level, without considering the 
multiple-testing problem, have been indicated by 
the plus signs.

The red circles in Fig. 7 locate the 51 grid elements 
exhibiting linear precipitation trends that are mean-
ingfully different from zero, assessed according to the 
FDR method with αFDR = 0.10. Here αFDR = α = 0.10 (the 
same test level as the original naïve stippling results) 
has been used because of the relatively weak spatial 
correlation of the underlying annual precipitation 
totals. Figure 8 shows these correlations for the pairs 
of colored grid elements in Fig. 7 separated by no 
more than 2 × 103 km and indicates an approximate 
e-folding decorrelation distance of 0.62 × 103 km, or 
about 150% of the typical grid element separation of 
approximately 400 km. Comparing Fig. 3, which was 
calculated on the basis of a 2° × 3° grid system, 150% 
of the typical grid separation of 250 km translates to 
an e-folding correlation distance of approximately 
0.38 × 103 km, for which choosing αFDR = α produces 
only very slight test conservatism.

Using αFDR = 0.10, p*
FDR = p(51) = 0.01136 [Eq. (3)], 

so that the 51 grid elements whose local tests reject 
null hypotheses of zero linear trend with p values no 
larger than 0.01136 can be regarded as meaningful. 
No more than five of these are expected to be errone-
ous rejections of true local null hypotheses.

SUMMARY, CONCLUSIONS, AND REC-
OMMENDATIONS. The problem of simultane-
ously evaluating results of multiple hypothesis tests, 
often at a large network of grid points or other geo-
graphic locations, is widespread in meteorology and 
climatology. Unfortunately, the dominant approach 

Fig. 5. False discovery rates for the FDR method with 
αFDR = 0.10 (red), the Livezey–Chen counting approach 
with α0 = αglobal = 0.05 (black), and the naïve stippling 
approach with α0 = 0.05 (brown), as functions of 
numbers of false local null hypotheses and alternative-
hypothesis magnitudes ∆µ, using the e-folding distance 
1.54 × 103 km.
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Fig. 6. Maps of local test decisions made by (a) the FDR procedure with αFDR = 0.10 
and (b) the naïve stippling approach using α0 = 0.05. Correct local null hypothesis 
rejections are indicated by plus signs, failures to reject false local null hypotheses 
are indicated by circles, and erroneous rejections of true null hypotheses are 
indicated by crosses. Results correspond to the ranked p values shown in Fig. 3, 
with NA = 156, ∆µ = 0.7, and e-folding distance 1.54 × 103 km.

Fig. 7. Linear trends in annual precipitation during 1951–2010, based on data 
from the Global Historical Climatology Network (Vose et al. 1992). Grid ele-
ments with linear trends exhibiting local statistical significance at the α = 0.10 
level are been indicated by the plus signs, and those with p values small enough 
to satisfy the FDR criterion with αFDR = 0.10 [Eq. (3)] are indicated by the red 
circles. The figure has been modified from Hartmann et al. (2013, p. 203).

to this problem in the literature is to naïvely examine 
each gridpoint test in isolation and then to report 
as “significant” any result for which a local null 
hypothesis is rejected, with no adjustment for the 
effects of test multiplicity on the overall result. As a 
consequence, language similar to the hypothetical 
quotation in the title of this paper is distressingly 
common, immediately flagging the results portrayed 
as almost certainly overstated. This statistically 
unprincipled practice should be unacceptable to 
reviewers and editors of scientific papers.

The necessity of cor-
recting for the effects of 
simultaneous multiple test 
results has been known in 
the atmospheric sciences 
literature for more than 
a century, dating at least 
from Walker (1914). More 
recently, this problem has 
been cast as a metatest on 
the col lective results of 
many individual test results 
and known as the assess-
ment of field significance 
(Livezey and Chen 1983). 
Although the field signifi-
cance approach was a very 
substantial advance over the 
naïve stippling procedure 
that ignores the effects of 

multiple testing, it suffers 
from several drawbacks.

Controlling the FDR 
(Benjamini and Hochberg 
1995; Ventura et al. 2004; 
Wilks 2006) has many fa-
vorable attributes, including 
only modest sensitivity to 
spatial autocorrelation in the 
underlying data, intuitive in-
terpretation, and only weak 
sensitivity to alternative-
hypothesis magnitudes and 
the number of false null 
hypotheses.

The examples employed 
here were constructed with-
out temporal autocorrela-
tion in order to simplify 
the exposition. However, 
because the FDR method 
is robust to spatial autocor-

relation, effects of temporal autocorrelation can be 
addressed with appropriate testing procedures (e.g., 
Katz 1982; Zwiers and Thiébaux 1987; Wilks 2011) in 
the individual gridpoint calculations, so that complex 
resampling procedures addressing both types of au-
tocorrelation simultaneously (e.g., Wilks 1997) are 
unnecessary. The examples presented here were based 
on local t tests pertaining to sample means and tests 
for nonzero regression slopes. However, the method 
is applicable to collections of multiple hypothesis test 
results, regardless of the mathematical forms of those 
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tests, so long as the individual tests operate correctly 
(i.e., with proportion of true null hypotheses rejected 
close to the nominal test level α0).

Perhaps the greatest advantage of the FDR ap-
proach is that, by design, a control limit is placed on 
the fraction of significant gridpoint test results that 
are spurious, which greatly enhances the scientific 
interpretability of the spatial patterns of significant 
results. Because the FDR approach is not only effective, 
but is also easy and computationally fast, it should be 
adopted whenever the results of simultaneous multiple 
hypothesis tests are reported or interpreted. Its main 
computational demand is only that the individual grid-
point p values be sorted and examined in light of Eq. 
(3). The usual strong spatial correlation encountered 
in gridded atmospheric data can be accommodated 
by choosing αFDR = 2αglobal, as illustrated in Fig. 4. The 
consequence of employing this statistically principled 
procedure—in stark contrast to the all-too-common 
naïve stippling approach—is that there is much re-
duced scope for overstatement and overinterpretation 
of the results. In particular, the analyst is not tempted 
to construct possibly fanciful rationalizations for the 
many spurious local test rejections, which may appear 
to be physically coherent structures because of the 
strong spatial autocorrelation.
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