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1 Introduction

Throughout this presentation I have chosen to use a symbolic matrix notation. This choice
was not made lightly. I am a strong advocate of index notation, when appropriate. For
example, index notation greatly simplifies the presentation and manipulation of differential
geometry. As a rule-of-thumb, if your work is going to primarily involve differentiation
with respect to the spatial coordinates, then index notation is almost surely the appropriate
choice.

In the present case, however, I will be manipulating large systems of equations in which
the matrix calculus is relatively simply while the matrix algebra and matrix arithmetic is
messy and more involved. Thus, I have chosen to use symbolic notation.

2 Notation and Nomenclature

Definition 1 Let aij ∈ R, i = 1, 2, . . . ,m, j = 1, 2, . . . ,n. Then the ordered rectangular
array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn

 (1)

is said to be a real matrix of dimension m× n.

When writing a matrix I will occasionally write down its typical element as well as its
dimension. Thus,

A = [aij] , i = 1, 2, . . . ,m; j = 1, 2, . . . ,n, (2)

denotes a matrix with m rows and n columns, whose typical element is aij. Note, the first
subscript locates the row in which the typical element lies while the second subscript locates
the column. For example, ajk denotes the element lying in the jth row and kth column of
the matrix A.

Definition 2 A vector is a matrix with only one column. Thus, all vectors are inherently
column vectors.

Convention 1
Multi-column matrices are denoted by boldface uppercase letters: for example, A, B, X.
Vectors (single-column matrices) are denoted by boldfaced lowercase letters: for example,
a, b, x. I will attempt to use letters from the beginning of the alphabet to designate known
matrices, and letters from the end of the alphabet for unknown or variable matrices.
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Convention 2
When it is useful to explicitly attach the matrix dimensions to the symbolic notation, I will
use an underscript. For example, A

m×n
, indicates a known, multi-column matrix with m rows

and n columns.

A superscript T denotes the matrix transpose operation; for example, AT denotes the
transpose of A. Similarly, if A has an inverse it will be denoted by A−1. The determinant
of A will be denoted by either |A| or det(A). Similarly, the rank of a matrix A is denoted by
rank(A). An identity matrix will be denoted by I, and 0 will denote a null matrix.

3 Matrix Multiplication

Definition 3 Let A be m× n, and B be n× p, and let the product AB be

C = AB (3)

then C is a m× p matrix, with element (i, j) given by

cij =

n∑
k=1

aikbkj (4)

for all i = 1, 2, . . . ,m, j = 1, 2, . . . ,p.

Proposition 1 Let A be m× n, and x be n× 1, then the typical element of the product

z = Ax (5)

is given by

zi =

n∑
k=1

aikxk (6)

for all i = 1, 2, . . . ,m. Similarly, let y be m× 1, then the typical element of the product

zT = yTA (7)

is given by

zi =

n∑
k=1

akiyk (8)

for all i = 1, 2, . . . ,n. Finally, the scalar resulting from the product

α = yTAx (9)

is given by

α =

m∑
j=1

n∑
k=1

ajkyjxk (10)

Proof: These are merely direct applications of Definition 3. q.e.d.
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Proposition 2 Let A be m× n, and B be n× p, and let the product AB be

C = AB (11)

then
CT = BTAT (12)

Proof: The typical element of C is given by

cij =

n∑
k=1

aikbkj (13)

By definition, the typical element of CT , say dij, is given by

dij = cji =

n∑
k=1

ajkbki (14)

Hence,
CT = BTAT (15)

q.e.d.

Proposition 3 Let A and B be n×n and invertible matrices. Let the product AB be given
by

C = AB (16)

then
C−1 = B−1A−1 (17)

Proof:
CB−1A−1 = ABB−1A−1 = I (18)

q.e.d.

4 Partioned Matrices

Frequently, I will find it convenient to deal with partitioned matrices 1. Such a representation,
and the manipulation of this representation, are two of the relative advantages of the symbolic
matrix notation.

Definition 4 Let A be m× n and write

A =

[
B C

D E

]
(19)

where B ism1×n1, E ism2×n2, C ism1×n2, D ism2×n1, m1+m2 = m, and n1+n2 = n.
The above is said to be a partition of the matrix A.

1Much of the material in this section is extracted directly from Dhrymes (1978, Section 2.7).
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Proposition 4 Let A be a square, nonsingular matrix of order m. Partition A as

A =

[
A11 A12

A21 A22

]
(20)

so that A11 is a nonsingular matrix of order m1, A22 is a nonsingular matrix of order m2,
and m1 +m2 = m. Then

A−1 =

[ (
A11 − A12A

−1
22 A21

)−1
−A−1

11 A12

(
A22 − A21A

−1
11 A12

)−1

−A−1
22 A21

(
A11 − A12A

−1
22 A21

)−1 (
A22 − A21A

−1
11 A12

)−1

]
(21)

Proof: Direct multiplication of the proposed A−1 and A yields

A−1A = I (22)

q.e.d.

5 Matrix Differentiation

In the following discussion I will differentiate matrix quantities with respect to the elements
of the referenced matrices. Although no new concept is required to carry out such operations,
the element-by-element calculations involve cumbersome manipulations and, thus, it is useful
to derive the necessary results and have them readily available 2.

Convention 3
Let

y = ψ(x), (23)

where y is an m-element vector, and x is an n-element vector. The symbol

∂y

∂x
=


∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xn
...

...
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

 (24)

will denote the m× n matrix of first-order partial derivatives of the transformation from x
to y. Such a matrix is called the Jacobian matrix of the transformation ψ().

Notice that if x is actually a scalar in Convention 3 then the resulting Jacobian matrix
is a m× 1 matrix; that is, a single column (a vector). On the other hand, if y is actually a
scalar in Convention 3 then the resulting Jacobian matrix is a 1×n matrix; that is, a single
row (the transpose of a vector).

Proposition 5 Let
y = Ax (25)

2Much of the material in this section is extracted directly from Dhrymes (1978, Section 4.3). The
interested reader is directed to this worthy reference to find additional results.
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where y is m× 1, x is n× 1, A is m× n, and A does not depend on x, then

∂y

∂x
= A (26)

Proof: Since the ith element of y is given by

yi =

n∑
k=1

aikxk (27)

it follows that
∂yi

∂xj
= aij (28)

for all i = 1, 2, . . . ,m, j = 1, 2, . . . ,n. Hence

∂y

∂x
= A (29)

q.e.d.

Proposition 6 Let
y = Ax (30)

where y is m× 1, x is n× 1, A is m×n, and A does not depend on x, as in Proposition 5.
Suppose that x is a function of the vector z, while A is independent of z. Then

∂y

∂z
= A

∂x

∂z
(31)

Proof: Since the ith element of y is given by

yi =

n∑
k=1

aikxk (32)

for all i = 1, 2, . . . ,m, it follows that

∂yi

∂zj
=

n∑
k=1

aik
∂xk

∂zj
(33)

but the right hand side of the above is simply element (i, j) of A∂x
∂z

. Hence

∂y

∂z
=
∂y

∂x

∂x

∂z
= A

∂x

∂z
(34)

q.e.d.

Proposition 7 Let the scalar α be defined by

α = yTAx (35)

where y is m× 1, x is n× 1, A is m× n, and A is independent of x and y, then

∂α

∂x
= yTA (36)
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and
∂α

∂y
= xTAT (37)

Proof: Define
wT = yTA (38)

and note that
α = wTx (39)

Hence, by Proposition 5 we have that

∂α

∂x
= wT = yTA (40)

which is the first result. Since α is a scalar, we can write

α = αT = xTATy (41)

and applying Proposition 5 as before we obtain

∂α

∂y
= xTAT (42)

q.e.d.

Proposition 8 For the special case in which the scalar α is given by the quadratic form

α = xTAx (43)

where x is n× 1, A is n× n, and A does not depend on x, then

∂α

∂x
= xT

(
A + AT

)
(44)

Proof: By definition

α =

n∑
j=1

n∑
i=1

aijxixj (45)

Differentiating with respect to the kth element of x we have

∂α

∂xk
=

n∑
j=1

akjxj +

n∑
i=1

aikxi (46)

for all k = 1, 2, . . . ,n, and consequently,

∂α

∂x
= xTAT + xTA = xT

(
AT + A

)
(47)

q.e.d.
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Proposition 9 For the special case where A is a symmetric matrix and

α = xTAx (48)

where x is n× 1, A is n× n, and A does not depend on x, then

∂α

∂x
= 2xTA (49)

Proof: This is an obvious application of Proposition 8. q.e.d.

Proposition 10 Let the scalar α be defined by

α = yTx (50)

where y is n× 1, x is n× 1, and both y and x are functions of the vector z. Then

∂α

∂z
= xT

∂y

∂z
+ yT

∂x

∂z
(51)

Proof: We have

α =

n∑
j=1

xjyj (52)

Differentiating with respect to the kth element of z we have

∂α

∂zk
=

n∑
j=1

(
xj
∂yj

∂zk
+ yj

∂xj

∂zk

)
(53)

for all k = 1, 2, . . . ,n, and consequently,

∂α

∂z
=
∂α

∂y

∂y

∂z
+
∂α

∂x

∂x

∂z
= xT

∂y

∂z
+ yT

∂x

∂z
(54)

q.e.d.

Proposition 11 Let the scalar α be defined by

α = xTx (55)

where x is n× 1, and x is a function of the vector z. Then

∂α

∂z
= 2xT

∂x

∂z
(56)

Proof: This is an obvious application of Proposition 10. q.e.d.

Proposition 12 Let the scalar α be defined by

α = yTAx (57)

where y is m × 1, x is n × 1, A is m × n, and both y and x are functions of the vector z,
while A does not depend on z. Then

∂α

∂z
= xTAT

∂y

∂z
+ yTA

∂x

∂z
(58)
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Proof: Define
wT = yTA (59)

and note that
α = wTx (60)

Applying Propositon 10 we have

∂α

∂z
= xT

∂w

∂z
+ wT

∂x

∂z
(61)

Substituting back in for w we arrive at

∂α

∂z
=
∂α

∂y

∂y

∂z
+
∂α

∂x

∂x

∂z
= xTAT

∂y

∂z
+ yTA

∂x

∂z
(62)

q.e.d.

Proposition 13 Let the scalar α be defined by the quadratic form

α = xTAx (63)

where x is n × 1, A is n × n, and x is a function of the vector z, while A does not depend
on z. Then

∂α

∂z
= xT

(
A + AT

) ∂x
∂z

(64)

Proof: This is an obvious application of Proposition 12. q.e.d.

Proposition 14 For the special case where A is a symmetric matrix and

α = xTAx (65)

where x is n × 1, A is n × n, and x is a function of the vector z, while A does not depend
on z. Then

∂α

∂z
= 2xTA

∂x

∂z
(66)

Proof: This is an obvious application of Proposition 13. q.e.d.

Definition 5 Let A be am×nmatrix whose elements are functions of the scalar parameter
α. Then the derivative of the matrix A with respect to the scalar parameter α is the m×n
matrix of element-by-element derivatives:

∂A

∂α
=


∂a11

∂α
∂a12

∂α
· · · ∂a1n

∂α
∂a21

∂α
∂a22

∂α
· · · ∂a2n

∂α
...

...
...

∂am1

∂α
∂am2

∂α
· · · ∂amn

∂α

 (67)

Proposition 15 Let A be a nonsingular, m ×m matrix whose elements are functions of
the scalar parameter α. Then

∂A−1

∂α
= −A−1∂A

∂α
A−1 (68)
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Proof: Start with the definition of the inverse

A−1A = I (69)

and differentiate, yielding

A−1∂A

∂α
+
∂A−1

∂α
A = 0 (70)

rearranging the terms yields
∂A−1

∂α
= −A−1∂A

∂α
A−1 (71)

q.e.d.
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